Characterization of conditions and determination of practical tips for mtDNA level estimation in various human cells
Abstract
Determination of mtDNA copy number in the cell is crucial to understand many cellular processes. Recently, the number of studies with the use of mitochondrial DNA (mtDNA) content as the determinant of mitochondrial abnormalities increased greatly, and it is still growing, therefore, optimization of technical conditions for this analysis is crucial. Despite using similar laboratory protocols, some results cannot be compared between research centers, thus causing discrepancies in the assessment of mtDNA content. The aim of this work was to test what conditions of biological sample collection and storage affect the estimation of mtDNA level relative to the nuclear DNA (nDNA) in the blood sample and dermal fibroblasts. We found that time and temperature of sample storage as well as type of blood sample (whole blood or leukocytes) influence the estimation of mtDNA/nDNA ratio in the blood. In the case of dermal fibroblasts collected from healthy control and Huntington disease patients, our data indicate that passage number of cells is essential to obtain reliable results.
References
Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., … Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–65. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7219534
Andreu, A. L., Martinez, R., Marti, R., & García-Arumí, E. (2009). Quantification of mitochondrial DNA copy number: Pre-analytical factors. Mitochondrion, 9(4), 242–246. https://doi.org/10.1016/j.mito.2009.02.006
Battersby, B. J., & Moyes, C. D. (1998). Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle. The American Journal of Physiology, 275(3 Pt 2), R905-12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9728090
Chabi, B., Camaret, B. M. de, Duborjal, H., Issartel, J.-P., & Stepien, G. (2003). Quantification of Mitochondrial DNA Deletion, Depletion, and Overreplication: Application to Diagnosis. Clinical Chemistry, 49(8), 1309–1317. https://doi.org/10.1373/49.8.1309
Chen, C. M., Wu, Y. R., Cheng, M. L., Liu, J. L., Lee, Y. M., Lee, P. W., … Chiu, D. T. Y. (2007). Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochemical and Biophysical Research Communications, 359(2), 335–340. https://doi.org/10.1016/j.bbrc.2007.05.093
Chen, S., Li, Z., He, Y., Zhang, F., Li, H., Liao, Y., … Tang, J. (2015). Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry, 15(1), 50. https://doi.org/10.1186/s12888-015-0432-y
Chinnery, P. F., & Samuels, D. C. (1999). Relaxed Replication of mtDNA: A Model with Implications for the Expression of Disease. The American Journal of Human Genetics, 64(4), 1158–1165. https://doi.org/10.1086/302311
Chiu, R. W. K., Chan, L. Y. S., Lam, N. Y. L., Tsui, N. B. Y., Ng, E. K. O., Rainer, T. H., & Dennis Lo, Y. M. (n.d.). Quantitative Analysis of Circulating Mitochondrial DNA in Plasma. Retrieved from http://clinchem.aaccjnls.org/content/clinchem/49/5/719.full.pdf
Gonzalez-Hunt, C. P., Rooney, J. P., Ryde, I. T., Anbalagan, C., Joglekar, R., & Meyer, J. N. (n.d.). PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage. https://doi.org/10.1002/0471140856.tx2011s67
Grady, J. P., Murphy, J. L., Blakely, E. L., Haller, R. G., Taylor, R. W., Turnbull, D. M., & Tuppen, H. A. L. (2014). Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle. PloS One, 9(12), e114462. https://doi.org/10.1371/journal.pone.0114462
Greaves, L. C., Reeve, A. K., Taylor, R. W., & Turnbull, D. M. (2012). Mitochondrial DNA and disease. The Journal of Pathology, 226(2), 274–86. https://doi.org/10.1002/path.3028
Holloszy, J. O., & Coyle, E. F. (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 56(4), 831–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6373687
Huang, J., Tan, L., Shen, R., Zhang, L., Zuo, H., & Wang, D. W. (2016). Decreased Peripheral Mitochondrial DNA Copy Number is Associated with the Risk of Heart Failure and Long-term Outcomes. Medicine, 95(15), e3323. https://doi.org/10.1097/MD.0000000000003323
Jedrak, P., Krygier, M., Tońska, K., Drozd, M., Kaliszewska, M., Ewa, B., … Barańska, S. (2017). Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts. Metabolic Brain Disease, 32, 1237–1247. https://doi.org/10.1007/s11011-017-0026-0
Kalinowski, D. P., Illenye, S., & Van Houten, B. (1992). Analysis of DNA damage and repair in murine leukemia L1210 cells using a quantitative polymerase chain reaction assay. Nucleic Acids Research, 20(13), 3485–94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1630919
Lee, H. ., Song, J. ., Shin, C. ., Park, D. ., Park, K. ., Lee, K. ., & Koh, C.-S. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice, 42(3), 161–167. https://doi.org/10.1016/S0168-8227(98)00110-7
Lee, H. C., Yin, P. H., Lu, C. Y., Chi, C. W., & Wei, Y. H. (2000). Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. The Biochemical Journal, 348 Pt 2(Pt 2), 425–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10816438
Liu, C. S., Cheng, W. L., Kuo, S. J., Li, J. Y., Soong, B. W., & Wei, Y. H. (2008). Depletion of mitochondrial DNA in leukocytes of patients with poly-Q diseases. Journal of the Neurological Sciences, 264(1–2), 18–21. https://doi.org/10.1016/j.jns.2007.07.016
LO, Y. M. D. (2006). Circulating Nucleic Acids in Plasma and Serum: An Overview. Annals of the New York Academy of Sciences, 945(1), 1–7. https://doi.org/10.1111/j.1749-6632.2001.tb03858.x
Malik, A. N., & Czajka, A. (2013). Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion, 13(5), 481–492. https://doi.org/10.1016/j.mito.2012.10.011
Malik, A. N., Shahni, R., & Iqbal, M. M. (2009). Increased peripheral blood mitochondrial DNA in type 2 diabetic patients with nephropathy. Diabetes Research and Clinical Practice, 86(2), 22–24. https://doi.org/10.1016/j.diabres.2009.07.002
Masayesva, B. G., Mambo, E., Taylor, R. J., Goloubeva, O. G., Zhou, S., Cohen, Y., … Califano, J. (2006). Mitochondrial DNA content increase in response to cigarette smoking. Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 15(1), 19–24. https://doi.org/10.1158/1055-9965.EPI-05-0210
Meissner, C., Mohamed, S. A., Klueter, H., Hamann, K., von Wurmb, N., & Oehmichen, M. (2000). Quantification of mitochondrial DNA in human blood cells using an automated detection system. Forensic Science International, 113(1–3), 109–12. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10978610
Morten, K., Ashley, N., Wijburg, F., Hadzic, N., & Parr, J. (2007). Liver mtDNA content increases during development: a comparison of methods and the importance of age-and tissue-specific controls for the diagnosis of mtDNA. Mitochondrion. Retrieved from http://www.sciencedirect.com/science/article/pii/S1567724907002401
Nicholls, D. G. (2002). Mitochondrial Bioenergetics, Aging, and Aging-Related Disease. Sci. Aging Knowl. Environ, 2002(31), 12. https://doi.org/10.1126/sageke.2002.31.pe12
Petersen, M. H., Budtz-Jørgensen, E., Sørensen, S. A., Nielsen, J. E., Hjermind, L. E., Vinther-Jensen, T., … Nørremølle, A. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington’s disease. Mitochondrion, 17, 14–21. https://doi.org/10.1016/j.mito.2014.05.001
Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., & Hudson, G. (2016). Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiology of Aging, 38, 216.e7-10. https://doi.org/10.1016/j.neurobiolaging.2015.10.033
Wallace, D. C. (2010). Mitochondrial DNA mutations in disease and aging. Environmental and Molecular Mutagenesis, 51(5), 440–50. https://doi.org/10.1002/em.20586
Weng, S.-W., Lin, T.-K., Liou, C.-W., Chen, S.-D., Wei, Y.-H., Lee, H.-C., … Wang, P.-W. (2009). Peripheral blood mitochondrial DNA content and dysregulation of glucose metabolism. Diabetes Research and Clinical Practice, 83(1), 94–99. https://doi.org/10.1016/j.diabres.2008.10.002
Wojtczak, L., & Zabocki, K. (2008). Basic Mitochondrial Physiology in Cell Viability and Death. In Drug-Induced Mitochondrial Dysfunction (pp. 1–35). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470372531.ch1
Wong, J., McLennan, S. V., Molyneaux, L., Min, D., Twigg, S. M., & Yue, D. K. (2009). Mitochondrial DNA content in peripheral blood monocytes: relationship with age of diabetes onset and diabetic complications. Diabetologia, 52(9), 1953–1961. https://doi.org/10.1007/s00125-009-1424-6
Zhang, H., Cooney, D. A., Sreenath, A., Zhan, Q., Agbaria, R., Stowe, E. E., … Johns, D. G. (1994). Quantitation of mitochondrial DNA in human lymphoblasts by a competitive polymerase chain reaction method: application to the study of inhibitors of mitochondrial DNA content. Molecular Pharmacology, 46(6), 1063–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7808425
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.