Lower levels of Caveolin-1 and higher levels of endothelial nitric oxide synthase are observed in abdominal aortic aneurysm patients treated with simvastatin

  • Karolina Kowalska Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria, Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Łódź, Poland
  • Dominika E Habrowska-Górczyńska Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Łódź, Poland
  • Christoph Neumayer Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
  • Michael Bolliger Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
  • Christoph Domenig Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
  • Agnieszka W Piastowska-Ciesielska Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Łódź, Poland
  • Ihor Huk Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
  • Aleksandra Piechota-Polanczyk Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
Keywords: Cav-1, eNOS, abdominal aortic aneurysm, simvastatin

Abstract

This study was undertaken to verify if simvastatin modulates Cav-1/eNOS expression and if this modulation is associated with changes in pro- and anti-inflammatory cytokines and Toll-like receptor 4 (TLR4) in abdominal aortic aneurysm (AAA). It was 1:2 case-control study of non-statin (n=12) and simvastatin-treated patients (n=24) who underwent open AAA repair. Simvastatin treatment significantly and dose-dependently decreased Cav-1 and increased eNOS expression in AAA wall (p<0.05 and p<0.01, respectively). The changes in Cav-1 and eNOS were associated with a trend towards decreased concentration of IL-6 and IL-17 (p>0.05) and increased concentration of IL-10 (p=0.055) but not with TLR4 expression suggesting other mechanism of simvastatin influence on Cav-1 and eNOS in AAA wall. Simvastatin may modulate Cav-1 and eNOS expression in aneurysmal wall indicating a new beneficial role of statins in AAA patients.

References

Almansob, M. A. et al., 2012a, Simvastatin reduces myocardial injury undergoing noncoronary artery cardiac surgery: a randomized controlled trial: Arterioscler.Thromb.Vasc.Biol., v. 32, no. 9, p. 2304-2313,ATVBAHA.112.252098 [pii];10.1161/ATVBAHA.112.252098 [doi].

Almansob, M. A. et al., 2012b, Simvastatin reduces myocardial injury undergoing noncoronary artery cardiac surgery: a randomized controlled trial: Arterioscler.Thromb.Vasc.Biol., v. 32, no. 9, p. 2304-2313,ATVBAHA.112.252098 [pii];10.1161/ATVBAHA.112.252098 [doi].

Arora, R., D. L. Hare, and A. Zulli, 2012, Simvastatin reduces endothelial NOS: caveolin-1 ratio but not the phosphorylation status of eNOS in vivo: J.Atheroscler.Thromb., v. 19, no. 8, p. 705-711,DN/JST.JSTAGE/jat/12401 [pii].

Azor, M. H., J. C. dos Santos, E. A. Futata, C. A. de Brito, C. W. Maruta, E. A. Rivitti, A. J. da Silva Duarte, and M. N. Sato, 2011, Statin effects on regulatory and proinflammatory factors in chronic idiopathic urticaria: Clin.Exp.Immunol., v. 166, no. 2, p. 291-298,10.1111/j.1365-2249.2011.04473.x [doi].

Chen, G., S. Zhang, J. Shi, J. Ai, M. Qi, and C. Hang, 2009, Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway: Exp.Neurol., v. 216, no. 2, p. 398-406,S0014-4886(08)00483-4 [pii];10.1016/j.expneurol.2008.12.019 [doi].

Chen, Y., S. Zhang, G. Peng, J. Yu, T. Liu, R. Meng, Z. Li, Y. Zhao, and G. Wu, 2013, Endothelial NO synthase and reactive oxygen species mediated effect of simvastatin on vessel structure and function: pleiotropic and dose-dependent effect on tumor vascular stabilization: Int.J.Oncol., v. 42, no. 4, p. 1325-1336,10.3892/ijo.2013.1833 [doi].

Ching, L. C., Y. R. Kou, S. K. Shyue, K. H. Su, J. Wei, L. C. Cheng, Y. B. Yu, C. C. Pan, and T. S. Lee, 2011, Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1: Cardiovasc.Res., v. 91, no. 3, p. 492-501,cvr104 [pii];10.1093/cvr/cvr104 [doi].

Chow, A. K., J. Cena, A. F. El-Yazbi, B. D. Crawford, A. Holt, W. J. Cho, E. E. Daniel, and R. Schulz, 2007, Caveolin-1 inhibits matrix metalloproteinase-2 activity in the heart: J.Mol.Cell Cardiol., v. 42, no. 4, p. 896-901,S0022-2828(07)00010-7 [pii];10.1016/j.yjmcc.2007.01.008 [doi].

Evans, J., J. T. Powell, E. Schwalbe, I. M. Loftus, and M. M. Thompson, 2007, Simvastatin attenuates the activity of matrix metalloprotease-9 in aneurysmal aortic tissue: Eur.J.Vasc.Endovasc.Surg., v. 34, no. 3, p. 302-303,S1078-5884(07)00283-3 [pii];10.1016/j.ejvs.2007.04.011 [doi].

Gao, L., K. L. Siu, K. Chalupsky, A. Nguyen, P. Chen, N. L. Weintraub, Z. Galis, and H. Cai, 2012, Role of uncoupled endothelial nitric oxide synthase in abdominal aortic aneurysm formation: treatment with folic acid: Hypertension, v. 59, no. 1, p. 158-166,HYPERTENSIONAHA.111.181644 [pii];10.1161/HYPERTENSIONAHA.111.181644 [doi].

Heeba, G., M. K. Hassan, M. Khalifa, and T. Malinski, 2007, Adverse balance of nitric oxide/peroxynitrite in the dysfunctional endothelium can be reversed by statins: J.Cardiovasc.Pharmacol., v. 50, no. 4, p. 391-398,10.1097/FJC.0b013e31811f3fd0 [doi];00005344-200710000-00006 [pii].

Hou, H. H., Y. J. Liao, S. H. Hsiao, S. K. Shyue, and T. S. Lee, 2015, Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase: Sci.Rep., v. 5, p. 13524,srep13524 [pii];10.1038/srep13524 [doi].

Huk, I. et al., 1997, L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle: Circulation, v. 96, no. 2, p. 667-675.

Johnston, K. W., R. B. Rutherford, M. D. Tilson, D. M. Shah, L. Hollier, and J. C. Stanley, 1991, Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery: J.Vasc.Surg., v. 13, no. 3, p. 452-458,S0741521491000794 [pii].

Johnston, W. F., M. Salmon, G. Su, G. Lu, M. L. Stone, Y. Zhao, G. K. Owens, G. R. Upchurch, Jr., and G. Ailawadi, 2013, Genetic and pharmacologic disruption of interleukin-1beta signaling inhibits experimental aortic aneurysm formation: Arterioscler.Thromb.Vasc.Biol., v. 33, no. 2, p. 294-304,ATVBAHA.112.300432 [pii];10.1161/ATVBAHA.112.300432 [doi].

Jones, K. G., D. J. Brull, L. C. Brown, M. Sian, R. M. Greenhalgh, S. E. Humphries, and J. T. Powell, 2001, Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms: Circulation, v. 103, no. 18, p. 2260-2265.

Kanai, A. J., H. C. Strauss, G. A. Truskey, A. L. Crews, S. Grunfeld, and T. Malinski, 1995, Shear stress induces ATP-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor: Circ.Res., v. 77, no. 2, p. 284-293.

Kokje, V. B., J. F. Hamming, and J. H. Lindeman, 2015, Editor's Choice - Pharmaceutical Management of Small Abdominal Aortic Aneurysms: A Systematic Review of the Clinical Evidence: Eur.J.Vasc.Endovasc.Surg., v. 50, no. 6, p. 702-713,S1078-5884(15)00621-8 [pii];10.1016/j.ejvs.2015.08.010 [doi].

Kowalska, K., M. Nowakowska, K. Dominska, and A. W. Piastowska-Ciesielska, 2016, Coexpression of CAV-1, AT1-R and FOXM1 in prostate and breast cancer and normal cell lines and their influence on metastatic properties: Acta Biochim.Pol., v. 63, no. 3, p. 493-499,2015_1016 [pii];10.18388/abp.2015_1016 [doi].

Kuhlencordt, P. J., R. Gyurko, F. Han, M. Scherrer-Crosbie, T. H. Aretz, R. Hajjar, M. H. Picard, and P. L. Huang, 2001, Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice: Circulation, v. 104, no. 4, p. 448-454.

Loboda, A., A. Jazwa, A. Jozkowicz, J. Dorosz, J. Balla, G. Molema, and J. Dulak, 2006, Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells: Atherosclerosis, v. 187, no. 1, p. 26-30,S0021-9150(06)00145-6 [pii];10.1016/j.atherosclerosis.2006.03.015 [doi].

Mastoraki, S. T., I. K. Toumpoulis, C. E. Anagnostopoulos, D. Tiniakos, A. Papalois, T. P. Chamogeorgakis, D. C. Angouras, and C. K. Rokkas, 2012, Treatment with simvastatin inhibits the formation of abdominal aortic aneurysms in rabbits: Ann.Vasc.Surg., v. 26, no. 2, p. 250-258,S0890-5096(11)00506-1 [pii];10.1016/j.avsg.2011.09.003 [doi].

Meda, C., C. Plank, O. Mykhaylyk, K. Schmidt, and B. Mayer, 2010, Effects of statins on nitric oxide/cGMP signaling in human umbilical vein endothelial cells: Pharmacol.Rep., v. 62, no. 1, p. 100-112.

Mirza, M. K., J. Yuan, X. P. Gao, S. Garrean, V. Brovkovych, A. B. Malik, C. Tiruppathi, and Y. Y. Zhao, 2010, Caveolin-1 deficiency dampens Toll-like receptor 4 signaling through eNOS activation: Am.J.Pathol., v. 176, no. 5, p. 2344-2351,S0002-9440(10)60030-2 [pii];10.2353/ajpath.2010.091088 [doi].

Moutzouri, E., C. C. Tellis, K. Rousouli, E. N. Liberopoulos, H. J. Milionis, M. S. Elisaf, and A. D. Tselepis, 2012, Effect of simvastatin or its combination with ezetimibe on Toll-like receptor expression and lipopolysaccharide - induced cytokine production in monocytes of hypercholesterolemic patients: Atherosclerosis, v. 225, no. 2, p. 381-387,S0021-9150(12)00586-2

[pii];10.1016/j.atherosclerosis.2012.08.037 [doi].

Niessner, A. et al., 2006, Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo: Atherosclerosis, v. 189, no. 2, p. 408-413,S0021-9150(05)00845-2 [pii];10.1016/j.atherosclerosis.2005.12.022 [doi].

Pfaffl, M. W., G. W. Horgan, and L. Dempfle, 2002, Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR: Nucleic Acids Res., v. 30, no. 9, p. e36.

Piechota-Polanczyk, A. et al., 2015a, The Influence of Simvastatin on NGAL, Matrix Metalloproteinases and Their Tissue Inhibitors in Human Intraluminal Thrombus and Abdominal Aortic Aneurysm Tissue: Eur.J.Vasc.Endovasc.Surg., v. 49, no. 5, p. 549-555,S1078-5884(15)00103-3 [pii];10.1016/j.ejvs.2015.02.011 [doi].

Piechota-Polanczyk, A. et al., 2013, Decreased tissue levels of cyclophilin A, a cyclosporine a target and phospho-ERK1/2 in simvastatin patients with abdominal aortic aneurysm: Eur.J.Vasc.Endovasc.Surg., v. 45, no. 6, p. 682-688,S1078-5884(13)00137-8 [pii];10.1016/j.ejvs.2013.02.015 [doi].

Piechota-Polanczyk, A. et al., 2012, Simvastatin decreases free radicals formation in the human abdominal aortic aneurysm wall via NF-kappaB: Eur.J.Vasc.Endovasc.Surg., v. 44, no. 2, p. 133-137,S1078-5884(12)00300-0 [pii];10.1016/j.ejvs.2012.04.020 [doi].

Piechota-Polanczyk, A., A. Jozkowicz, W. Nowak, W. Eilenberg, C. Neumayer, T. Malinski, I. Huk, and C. Brostjan, 2015b, The Abdominal Aortic Aneurysm and Intraluminal Thrombus: Current Concepts of Development and Treatment: Front Cardiovasc.Med., v. 2, p. 19,10.3389/fcvm.2015.00019 [doi].

Ricchiuti, V., N. Lapointe, L. Pojoga, T. Yao, L. Tran, G. H. Williams, and G. K. Adler, 2011, Dietary sodium intake regulates angiotensin II type 1, mineralocorticoid receptor, and associated signaling proteins in heart: J.Endocrinol., v. 211, no. 1, p. 47-54,JOE-10-0458 [pii];10.1530/JOE-10-0458 [doi].

Shao, H., Y. Shen, H. Liu, G. Dong, J. Qiang, and H. Jing, 2007, Simvastatin suppresses lung inflammatory response in a rat cardiopulmonary bypass model: Ann.Thorac.Surg., v. 84, no. 6, p. 2011-2018,S0003-4975(07)01455-5 [pii];10.1016/j.athoracsur.2007.07.022 [doi].

Singh, P., T. E. Peterson, F. H. Sert-Kuniyoshi, M. D. Jensen, and V. K. Somers, 2011, Leptin upregulates caveolin-1 expression: implications for development of atherosclerosis: Atherosclerosis, v. 217, no. 2, p. 499-502,S0021-9150(10)00823-3 [pii];10.1016/j.atherosclerosis.2010.10.012 [doi].

Sun, W., T. S. Lee, M. Zhu, C. Gu, Y. Wang, Y. Zhu, and J. Y. Shyy, 2006, Statins activate AMP-activated protein kinase in vitro and in vivo: Circulation, v. 114, no. 24, p. 2655-2662,CIRCULATIONAHA.106.630194 [pii];10.1161/CIRCULATIONAHA.106.630194 [doi].

Takayama, T., and D. Yamanouchi, 2013, Aneurysmal disease: the abdominal aorta: Surg.Clin.North Am., v. 93, no. 4, p. 877-91,S0039-6109(13)00071-6 [pii];10.1016/j.suc.2013.05.005 [doi].

Takayanagi, T., K. J. Crawford, T. Kobayashi, T. Obama, T. Tsuji, K. J. Elliott, T. Hashimoto, V. Rizzo, and S. Eguchi, 2014, Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase: Clin.Sci.(Lond), v. 126, no. 11, p. 785-794,CS20130660 [pii];10.1042/CS20130660 [doi].

Testa, A., B. Spoto, M. C. Sanguedolce, R. M. Parlongo, A. Pisano, G. Tripepi, F. A. Benedetto, F. Mallamaci, and C. Zoccali, 2012, eNOS and caveolin-1 gene polymorphisms interaction and intima media thickness: a proof of concept study in ESRD patients: Am.J.Hypertens., v. 25, no. 1, p. 103-108,ajh2011178 [pii];10.1038/ajh.2011.178 [doi].

Wang, X. M., H. P. Kim, K. Nakahira, S. W. Ryter, and A. M. Choi, 2009, The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1: J.Immunol., v. 182, no. 6, p. 3809-3818,182/6/3809 [pii];10.4049/jimmunol.0712437 [doi].

Weiss, C. R., Q. Guan, Y. Ma, G. Qing, C. N. Bernstein, R. J. Warrington, and Z. Peng, 2015, The potential protective role of caveolin-1 in intestinal inflammation in TNBS-induced murine colitis: PLoS.One., v. 10, no. 3, p. e0119004,10.1371/journal.pone.0119004 [doi];PONE-D-14-11261 [pii].

Published
2018-05-27
Section
Articles