Interval hypoxic training in complex treatment of Helicobacter pylori-associated peptic ulcer disease.

  • Khrysyna O Semen Department of Internal Medicine, Danylo Halytskyi National Medical University, Lviv, Ukraine.;
  • Olha P Yelisyeyeva
  • Danylo V Kaminskyy
  • Andriy P Cherkas
  • Kamelija Zarkovic
  • O Lutsyk
  • Ana Cipak
  • Morana Jaganjac
  • Neven Zarkovic

Abstract

This study was aimed to demonstrate the efficacy of interval hypoxic training (IHT) in complex treatment of Helicobacter pylori-associated duodenal peptic ulcer disease (DPUD) by parameters of aerobic metabolism and indexes of heart rate variability (HRV). Eighty patients with H. pylori-associated DPUD were included into the study, mean age 32+/-1.8 yrs, duration of the disease up to 10 years (66.3 %). IHT was modulated using Frolov's hypoxicator (TDI-01) for 30 days after standard eradication therapy. Daily hypoxic sessions consisted of three one-minute sessions, one two-minute, and one three-minute sessions separated by one-minute intervals of room-air breathing. Use of IHT resulted in more efficient elimination of clinical symptoms, histological hallmarks of inflammation and signs of oxidative stress in glandulocytes of the gastric mucosa as determined by 4-hydroxynonenal accumulation. Moderate prooxidant activity of IHT was demonstrated by the increased level of TBARS and oxidatively modified products, normalization of hydroperoxides, middle mass molecules and atherogenic beta-lipoproteins with simultaneous increase in catalase activity and mild decline of SOD activity. Therefore, IHT appeared to be accompanied by higher intensity of redox reactions and enhanced regeneratory processes in cells and tissues. Significant increase in HRV was also noted. Such changes were associated with reduction of inflammation signs and modulation of the autonomic homeostasis in DPUD patients. In general, use of IHT in complex treatment of H. pylori in DPUD patients can be recommended to increase resistance to oxidative stress and to modulate autonomic balance and oxidative homeostasis.
Published
2010-06-08
Section
Articles