Cu,Zn-superoxide dismutase deficiency in mice leads to organ-specific increase in oxidatively damaged DNA and NF-κB1 protein activity.
Abstract
Earlier experimental studies have demonstrated that: i) Cu,Zn-superoxide dismutase deficiency leads to oxidative stress and carcinogenesis; ii) dysregulation of NF-κB pathway can mediate a wide variety of diseases, including cancer. Therefore, we decided, for the first time, to examine the level of oxidative DNA damage and the DNA binding activity of NF-κB proteins in SOD1 knockout, heterozygous and wild-type mice. Two kinds of biomarkers of oxidatively damaged DNA: urinary excretion of 8-oxodG and 8-oxoGua, and the level of oxidatively damaged DNA were analysed using HPLC-GC-MS and HPLC-EC. The DNA binding activity of p50 and p65 proteins in a nuclear extracts was assessed using NF-κB p50/p65 EZ-TFA transcription factor assay. These parameters were determined in the brain, liver, kidney and urine of SOD1 knockout, heterozygous and wild-type mice. The level of 8-oxodG in DNA was higher in the liver and kidney of knockout mice than in wild type. No differences were found in urinary excretion of 8-oxoGua and 8-oxodG between wild type and the SOD1-deficient animals. The activity of the p50 protein was higher in the kidneys, but surprisingly not in the livers of SOD1-deficient mice, whereas p65 activity did not show any variability. Our results indicate that in Cu,Zn-SOD-deficient animals the level of oxidative DNA damage and NF-κB1 activity are elevated in certain organs only, which may provide some explanation for organ-specific ROS-induced carcinogenesis.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.