Influence of oleic acid in different solvent media on BRL 3A cell growth and viability

  • Runqi Liu Heilongjiang Bayi Agricultural University
  • Chuang Xu Heilongjiang Bayi Agricultural University
  • Wei Yang Heilongjiang Bayi Agricultural University
  • Cheng Xia Heilongjiang Bayi Agricultural University
  • Yuanyuan Chen Heilongjiang Bayi Agricultural University
  • Sansi Gao
  • Baoyin Huang Heilongjiang Bayi Agricultural University
  • Ping He Heilongjiang Bayi Agricultural University
  • Zhihao Dong Heilongjiang Bayi Agricultural University
Keywords: oleic acid, nonalcoholic fatty liver disease, liver lipid deposition

Abstract

Abstract: Oleic acid (OA) is widely used in pathology studies of hepatocellular lipid deposition. Identifying the effects of different solvents on OA-induced liver lipid deposition would be beneficial for studies on hepatocytes. We treated BRL 3A cells with OA dissolved in different solvents. After 12 h incubation, cell viability was assessed using MTT assays, reactive oxygen species (ROS), triglyceride (TG) and  total cholesterol (TC) counts, and expression level of glucose regulated protein (GRP78), sterol regulatory element binding protein (SREBP-1C) and fatty acid synthase (FAS) were analyzed. As results, H2O, PBS and DMSO are disadvantageous to the dissolution of OA that did not cause the corresponding response of hepatocytes. Alcohol+OA group caused severe ER stress, oxidative stress and hepatic fat deposition degree were significantly increased, but the alcohol group also leads to liver injury. BSA can promote cell growth and 1.2% BSA+OA group showed a lower grade TG and endoplasmic reticulum stress compared with KOH+OA and Alcohol+OA groups. KOH was not effective for BRL 3A cells. When treated with OA dissolved in KOH, BRL 3A cells showed a typically hepatocyte damage. KOH was considered the suitable choice of OA solvents for BRL 3A cells in hepatic lipidosis research.

References

REFERENCES

Adolph, T. E., C. Grander, F. Grabherr & H. Tilg (2017) Adipokines and Non-Alcoholic Fatty Liver Disease: Multiple Interactions. Int J Mol Sci, 18.doi:10.3390/ijms18081649

Caires, K. C., C. M. Shima, J. de Avila & D. J. McLean (2012) Acute ethanol exposure affects spermatogonial stem cell homeostasis in pre-pubertal mice. Reprod Toxicol, 33, 76-84.doi:10.1016/j.reprotox.2011.12.002

Cairns, R., A. Alvarez-Guaita, I. Martinez-Saludes, S. J. Wason, J. Hanh, S. R. Nagarajan, E. Hosseini-Beheshti, K. Monastyrskaya, A. J. Hoy, C. Buechler, C. Enrich, C. Rentero & T. Grewal (2017) Role of hepatic Annexin A6 in fatty acid-induced lipid droplet formation. Exp Cell Res.doi:10.1016/j.yexcr.2017.07.015

Cinti, D. L., L. Cook, M. N. Nagi & S. K. Suneja (1992) The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog Lipid Res, 31, 1-51

Du, X., Z. Shi, Z. Peng, C. Zhao, Y. Zhang, Z. Wang, X. Li, G. Liu & X. Li (2017) Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows. J Cell Physiol, 232, 3296-3308.doi:10.1002/jcp.25773

Galvao, J., B. Davis, M. Tilley, E. Normando, M. R. Duchen & M. F. Cordeiro (2014) Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J, 28, 1317-30.doi:10.1096/fj.13-235440

Imai, K., N. Kudo, M. Koyama & Y. Kawashima (2003) Effects of dehydroepiandrosterone on oleic acid accumulation in rat liver. Biochem Pharmacol, 65, 1583-91

Li, X., W. Huang, J. Gu, X. Du, L. Lei, X. Yuan, G. Sun, Z. Wang, X. Li & G. Liu (2015) SREBP-1c overactivates ROS-mediated hepatic NF-kappaB inflammatory pathway in dairy cows with fatty liver. Cell Signal, 27, 2099-109.doi:10.1016/j.cellsig.2015.07.011

Liao, F. H., T. H. Liou, M. J. Shieh & Y. W. Chien (2010) Effects of different ratios of monounsaturated and polyunsaturated fatty acids to saturated fatty acids on regulating body fat deposition in hamsters. Nutrition, 26, 811-7.doi:10.1016/j.nut.2009.09.009

Moslehi, A., F. Nabavizadeh, A. Zekri & F. Amiri (2017) Naltrexone changes the expression of lipid metabolism-related proteins in the endoplasmic reticulum stress induced hepatic steatosis in mice. Clin Exp Pharmacol Physiol, 44, 207-212.doi:10.1111/1440-1681.12695

Mota, M., B. A. Banini, S. C. Cazanave & A. J. Sanyal (2016) Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism, 65, 1049-61.doi:10.1016/j.metabol.2016.02.014

Muller, C., A. Gardemann, G. Keilhoff, D. Peter, I. Wiswedel, S. Kropf & L. Schild (2010) Palmitate protects hepatocytes from oxidative stress and triacylglyceride accumulation by stimulation of nitric oxide synthesis in the presence of high glucose and insulin concentration. Free Radic Res, 44, 1425-34.doi:10.3109/10715762.2010.512919

Muller, C., A. Gardemann, G. Keilhoff, D. Peter, I. Wiswedel & L. Schild (2012) Prevention of free fatty acid-induced lipid accumulation, oxidative stress, and cell death in primary hepatocyte cultures by a Gynostemma pentaphyllum extract. Phytomedicine, 19, 395-401.doi:10.1016/j.phymed.2011.12.002

Periasamy, S., S. P. Chien, P. C. Chang, D. Z. Hsu & M. Y. Liu (2014) Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis. J Nutr Biochem, 25, 232-40.doi:10.1016/j.jnutbio.2013.10.013

Perla, F. M., M. Prelati, M. Lavorato, D. Visicchio & C. Anania (2017) The Role of Lipid and Lipoprotein Metabolism in Non-Alcoholic Fatty Liver Disease. Children (Basel), 4.doi:10.3390/children4060046

Shenglong Zhu, Lei Ma, Yunzhou Wu, X. Y., Tianyuan Zhang, Qingyang Zhang, Lubna Muhi Rasoul, & M. G. Yunye Liu, Bing Zhou, Guiping Ren1*, and Deshan Li (2014) FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK-SIRT1 pathway. Acta Biochimica et Biophysica Sinica

Shi, X., D. Li, Q. Deng, Y. Li, G. Sun, X. Yuan, Y. Song, Z. Wang, X. Li, X. Li & G. Liu (2015) NEFAs activate the oxidative stress-mediated NF-kappaB signaling pathway to induce inflammatory response in calf hepatocytes. J Steroid Biochem Mol Biol, 145, 103-12.doi:10.1016/j.jsbmb.2014.10.014

Song, Y., N. Li, J. Gu, S. Fu, Z. Peng, C. Zhao, Y. Zhang, X. Li, Z. Wang, X. Li & G. Liu (2016) beta-Hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway. J Dairy Sci, 99, 9184-9198.doi:10.3168/jds.2016-11219

Webster, N. J. G. (2017) Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne), 8, 133.doi:10.3389/fendo.2017.00133

Weng, J., W. Li, X. Jia & W. An (2017) Alleviation of Ischemia-Reperfusion Injury in Liver Steatosis by Augmenter of Liver Regeneration (ALR) Is Attributed to Antioxidation and Preservation of Mitochondria. Transplantation.doi:10.1097/TP.0000000000001874

Xu, C., L. W. Sun, C. Xia, H. Y. Zhang, J. S. Zheng & J. S. Wang (2016a) (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver. Asian-Australas J Anim Sci, 29, 219-29.doi:10.5713/ajas.15.0439

Xu, C., Q. Xu, Y. Chen, W. Yang, C. Xia, H. Yu, K. Zhu, T. Shen & Z. Zhang (2015) The relationship between Fibroblast Growth Factor-21 and characteristic parameters related to energy balance in dairy cows. BMC Vet Res, 11, 271.doi:10.1186/s12917-015-0585-4

--- (2016b) FGF-21: promising biomarker for detecting ketosis in dairy cows. Vet Res Commun, 40, 49-54.doi:10.1007/s11259-015-9650-5

Zhang, J., Y. Li, S. Jiang, H. Yu & W. An (2014) Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis. Am J Physiol Cell Physiol, 306, C279-90.doi:10.1152/ajpcell.00117.2013

Zhao, L. & S. L. Ackerman (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol, 18, 444-52.doi:10.1016/j.ceb.2006.06.005

Zhou, B., D. L. Zhou, X. H. Wei, R. Y. Zhong, J. Xu & L. Sun (2017) Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation. Acta Pharmacol Sin, 38, 998-1008.doi:10.1038/aps.2016.175

Published
2018-09-15
Section
Articles