Deficiency of long-chain polyunsaturated fatty acids in phenylketonuria: a cross-sectional study

  • Sławomira Drzymała-Czyż Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
  • Łukasz Kałużny Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
  • Patrycja Krzyżanowska-Jankowska Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
  • Dariusz Walkowiak Department of Organization and Management in Health Care, Poznan University of Medical Sciences, Smoluchowskiego 11, 60-179 Poznań, Poland
  • Renata Morzymas Voivodeship Hospital, H. M. Kamieńskiego 73a, 51-124 Wrocław, Poland
  • Jarosław Walkowiak Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
Keywords: phospholipids, docosahexaenoic acid, dietary intake, inborn error of metabolism, metabolic diseases, desaturase

Abstract

Deficiency of long-chain polyunsaturated fatty acids in phenylketonuria: a cross-sectional study  

 

Abstract

            The etiology of altered blood fatty acid (FA) profile in phenylketonuria (PKU) is understood only partially.

            We aimed to determine whether FAs deficiency is dependent on diet or metabolic disturbances.

            The study comprised 40 PKU patients (20 female, 20 male; aged 11 to 35 years;  12 children and 28 adults) and 40 healthy subjects (HS; 20 female, 20 male, aged 18 to 33 years). We assessed the profile of FAs (gas chromatography/mass spectrometry) and analyzed the 72-hour dietary recalls.

            The amount of C14:0, C16:0 and C16:1n-7, C18:1n-9 did not differ between the analyzed groups. The percentage of C18:0 was higher, while C20:3n-9, C18:2n-6, C20:2n-6, C20:4n-6, C22:4n-6, C22:5n-6 and C22:6n-3 was lower in PKU than in HS. However, C18:3n-6, C18:3n-3 and n-6/n-3 ratio were higher in PKU patients. The C20:4n-6/C20:3n-6 ratio (reaction catalyzed by Δ5-desaturase), the C22:5n-6/C22:4n-6 and the C22:6n-3/C22:5n-3 ratio (both reactions catalyzed by Δ6-desaturase) were significantly lower in PKU patients.

            The deficiency of long-chain polyunsaturated fatty acids in PKU patients may result not only from inadequate supply but also from metabolic disturbances.

References

Acosta PB, Yannicelli S, Singh R, Eisas LJ, Kennedy MJ, Bernstein L, Rohr F, Trahms C, Koch R, Breck J (2001) Intake and blood levels of fatty acids in treated patients with phenylketonuria. J Pediatr Gastroenterol Nutr 33: 253–259.

Agostoni C, Braegger C, Decsi T, Kolacek S, Mihatsch W, Moreno LA, Puntis J, Shamir R, Szajewska H, Turck D, van Goudoever J (2011) Supplementation of N-3 LCPUFA to the diet of children older than 2 years: a commentary by the ESPGHAN Committee on nutrition. J Pediatr Gastroenterol Nutr 53: 2–10. https://doi.org/10.1097/MPG.0b013e318216f009

Agostoni C, Verduci E, Massetto N, Fiori L, Radaelli G, Riva E, Giovannini M (2003) Long term effects of long chain polyunsaturated fats in hyperphenylalaninemic children. Arch Dis Child 88: 582–583.

Al Hafid N, Christodoulou J (2015) Phenylketonuria: a review of current and future treatments. Transl Pediatr 4: 304–317. https://doi.org/10.3978/j.issn.2224-4336.2015.10.07

Beblo S, Reinhardt H, Demmelmair H, Muntau AC, Koletzko B (2007) Effect of fish oil supplementation on fatty acid status, coordination, and fine motor skills in children with phenylketonuria. J Pediatr 150: 479–484. https://doi.org/10.1016/j.jpeds.2006.12.011

Blau N, Bélanger-Quintana A, Demirkol M, Feillet F, Giovannini M, MacDonald A, Trefz FK, van Spronsen F, European PKU centers (2010) Management of phenylketonuria in Europe: survey results from 19 countries. Mol Genet Metab 99: 109–115. https://doi.org/10.1016/j.ymgme.2009.09.005

Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U, (2011) Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 104 Suppl: S2–9. https://doi.org/10.1016/j.ymgme.2011.08.017

Bosdet T, Branov J, Selvage C, Yousefi M, Sirrs S (2015) Diet history is a reliable predictor of suboptimal docosahexaenoic acid levels in adult patients with phenylketonuria. JIMD Reports 21: 97–102.

Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142: 592S–599S. https://doi.org/10.3945/jn.111.155259

Drzymała-Czyż S, Krzyżanowska P, Koletzko B, Nowak J, Miśkiewicz-Chotnicka A, Moczko J, Lisowska A, Walkowiak J (2017) Determinants of serum glycerophospholipid fatty acids in cystic fibrosis. Int J Mol Sci 18: 185. https://doi.org/10.3390/ijms18010185

Feillet F, Agostoni C (2010) Nutritional issues in treating phenylketonuria. J Inherit Metab Dis 33: 659–664. https://doi.org/10.1007/s10545-010-9043-4

Giovannini M, Verduci E, Radaelli G, Lammardo A, Minghetti D, Cagnoli G, Salvatici E, Riva E (2011) Long-chain polyunsaturated fatty acids profile in plasma phospholipids of hyperphenylalaninemic children on unrestricted diet. Prostaglandins Leukot Essent Fatty Acids 84: 39–42. https://doi.org/10.1016/j.plefa.2010.09.003

Giovannini M, Verduci E, Salvatici E, Paci S, Riva E (2012) Phenylketonuria: nutritional advances and challenges. Nutr Metab 9: 7. https://doi.org/10.1186/1743-7075-9-7

Glaser C, Demmelmair H, Koletzko B (2010) High-throughput analysis of fatty acid composition of plasma glycerophospholipids. J Lipid Res 51: 216–221. https://doi.org/10.1194/jlr.D000547

Gramer G, Haege G, Langhans CD, Schuhmann V, Burgard P, Hoffmann GF (2016) Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria. Prostaglandins Leukot Essent Fat Acids 109: 52–57.

https://doi.org/10.1016/j.plefa.2016.04.005

Htun P, Nee J, Ploeckinger U, Eder K, Geisler T, Gawaz M, Bocksch W, Fateh-Moghadam S (2015) Fish-free diet in patients with phenylketonuria is not associated with early atherosclerotic changes and enhanced platelet activation. PloS One 10: e0135930. https://doi.org/10.1371/journal.pone.0135930

Infante JP, Huszagh VA (2001) Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. Mol Genet Metab 72: 185–198. https://doi.org/10.1006/mgme.2001.3148

Jarosz M (2012) Normy żywienia dla populacji polskiej - nowelizacja. Instytut Żywności i Żywienia.

Koletzko B, Beblo S, Demmelmair H, Müller-Felber W, Hanebutt F.L (2009) Does dietary DHA improve neural function in children? Observations in phenylketonuria. Prostaglandins Leukot Essent Fatty Acids 81: 159–164. https://doi.org/10.1016/j.plefa.2009.06.006

Koletzko B, Sauerwald T, Demmelmair H, Herzog M, von Schenck U, Böhles H, Wendel U, Seidel J (2007) Dietary long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria: a randomized controlled trial. J Inherit Metab Dis 30: 326–332. https://doi.org/10.1007/s10545-007-0491-4

Lage S, Bueno M, Andrade F, Prieto JA, Delgado C, Legarda M, Sanjurjo P, Aldámiz-Echevarría LJ (2010) Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density. J Inherit Metab Dis 33: S363–371. https://doi.org/10.1007/s10545-010-9189-0

Lohner S, Fekete K, Decsi T (2013) Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: a systematic review and meta-analysis. Nutr Res 33: 513–520. https://doi.org/10.1016/j.nutres.2013.05.003

Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA (1995) Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 36: 2433–2443.

Moseley K, Koch R, Moser AB (2002) Lipid status and long-chain polyunsaturated fatty acid concentrations in adults and adolescents with phenylketonuria on phenylalanine-restricted diet. J Inherit Metab Dis 25: 56–64.

Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, Rae C, Green K, Wilcken B, Christodoulou J (2007) The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab 91: 48–54.

https://doi.org/10.1016/j.ymgme.2007.02.002

Scriver C, Beaudet A, Sly W, Valle D (2001) The metabolic and molecular bases of inherited disease 8th edn. ed. McGraw Hill.

Singh RH, Cunningham AC, Mofidi S, Douglas TD, Frazier DM, Hook DG, Jeffers L, McCune H, Moseley KD, Ogata B, Pendyal S, Skrabal J, Splett PL, Stembridge A, Wessel A, Rohr F (2016) Updated, web-based nutrition management guideline for PKU: An evidence and consensus based approach. Mol Genet Metab 118: 72–83.

https://doi.org/10.1016/j.ymgme.2016.04.008

van Gool CJ, van Houwelingen AC, Hornstra (2000) The essential fatty acid status in phenylketonuria patients under treatment. J Nutr Biochem 11: 543–547.

van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Giżewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ (2017) The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 12: 162. https://doi.org/10.1186/s13023-017-0685-2

Published
2018-07-08
Section
Articles