Novel luminescent dyes for confocal laser scanning microscopy used in parasite Trematoda diagnostics*

* Preliminary report presented: Diagnostic of parasites using novel luminescent dyes and confocal laser scanning microscopy. 6th Central European Congress of Life Sciences. EUROBIOTECH , 11–14 September, 2017, Krakow, Poland

  • Elena M. Kirilova Daugavpils University http://orcid.org/0000-0002-9577-5612
  • Sanita Kecko Daugavpils University
  • Ligita Mežaraupe Daugavpils University
  • Inese Gavarāne Daugavpils University
  • Aleksandrs Pučkins Daugavpils University
  • Ilona Mickeviča Daugavpils University
  • Ilze Rubeniņa Daugavpils University
  • Sergejs Osipovs Daugavpils University
  • Andrejs Bulanovs Daugavpils University
  • Mihails Pupiņš Latgales Zoo
  • Muza Kirjušina Daugavpils University

Abstract

Benzanthrone derivates are now widely used in many industrial and scientific applications as a dye for polymers and textiles. In biochemical, biomedical and diagnostics investigations benzanthrone dyes are used as a lipophilic fluorescent probe as many benzanthrone derivates demonstrate bright fluorescence and they have ability to intercalate between lipids of membrane. The aim of present research was to access the luminescence ability of benzanthrone derivatives using microscopic visualization of biological objects. Accordingly, specimens of freshwater trematode Diplostomum spathaceum, Diplodiscus subclavatus and Prosotocus confusus were stained by all novel benzanthrone dyes using different fixatives. The samples were examined by confocal laser scanning microscope. All dyes showed good results of digestive and reproductive system visualization. Based on obtained results we conclude that all benzanthrone dyes could be used for internal and external structure confocal laser scanning microscopic imaging of trematode specimens.

References

Albani JR (2007) Principles and applications of fluorescence spectroscopy. Oxford, Blackwell. https://doi.org/10.1002/9780470692059

Alfano RR, Tata DB, Corsero J, Tomashefsky P, Longo FW, Alfano MA (1984) Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Elect 20: 1507–1511. https://doi.org/10.1109/JQE.1984.1072322

Borges N, Costa VS, Mantovani C, Barros E, Santos EGN, Marfa CL, Santos CP (2017) Molecular characterization and confocal laser scanning microscopic study of Pygidiopsis macrostomum (Trematoda: Heterophyidae) parasites of guppies Poecilia vivipara. J Fish Dis 40: 191-203. https://doi.org/10.1111/jfd.12504

Bragaa JC, Caob T, Olivierob MC, Duprata J, Rabinovitzb HS, Rezzea GG (2012) In vivo confocal microscopy: a promising diagnostic method for cutaneous oncology. J Clin Exp Dermatol Res S3. https://doi.org/10.4172/2155-9554.S3-002

Carlini F, Paffoni C, Boffa G (1982) New daylight fluorescent pigments. Dyes Pigm 3: 59-69. https://doi.org/10.1016/0143-7208(82)80013-2

Durko Ł, Małecka-Panas E (2015) The role of confocal microscopy in the diagnosis of pancreatic neoplasms. Postępy Nauk Medycznych 28: 38-41.

Farnetani F, Scope A, Braun RP, Gonzalez S, Guitera P, Malvehy J, Manfredini M, Marghoob AA, Moscarella E, Oliviero M, Puig S, Rabinovitz HS, Stanganelli I, Longo C, Malagoli C, Vinceti M, Pellacani G (2015) Skin cancer diagnosis with reflectance confocal microscopy reproducibility of feature recognition and accuracy of diagnosis. JAMA Dermatol 151: 1075-1080. https://doi.org/10.1001/jamadermatol.2015.0810

Garcia-Vasquez A, Shinn AP, Bron JE (2012) Development of a light microscopy stain for the sclerites of Gyrodactylus von Nordmann, 1832 (Monogenea) and related genera. Parasitol Res 110:1639-1648. https://doi.org/10.1007/s00436-011-2675-y

Gonta S, Utinans M, Kirilov G, Belyakov S, Ivanova I, Fleisher M, Savenkov V, Kirilova E (2013) Fluorescent substituted amidines of benzanthrone: synthesis, spectroscopy and quantum chemical calculations. Spectrochim Acta A 101: 325-334. http://dx.doi.org/10.1016/j.saa.2012.09.104

Gorbenko G, Trusova V, Kirilova E, Kirilov G, Kalnina I, Vasilev A, Kaloyanova S, Deligeorgiev T (2010) New fluorescent probes for detection and characterization of amyloid fibrils. Chem Phys Lett 495: 275–279. https://doi.org/10.1016/j.cplett.2010.07.005

Halton DW, Maule AG (2004) Flatworm nerve-muscle: structural and functional analysis. Can J Zool 82: 316–333. https://doi.org/10.1139/z03-221

Jurberg AD, Pascarelli BM, Pelajo-Machado M, Maldonado A Jr, Mota EM, Lenzi HL (2008) Trematode embryology: a new method for whole-egg analysis by confocal microscopy. Dev Genes Evol 218: 267–271. https://doi.org/10.1007/s00427-008-0209-0

Justine JL, Briand MJ, Bray RA (2012) A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitol Res 111: 341–351. https://doi.org/10.1007/s00436-012-2845-6

Khalil MI, El-Shahawy IS, Abdelkader HS (2014) Studies on some fish parasites of public health importance in the southern area of Saudi Arabia. Rev Bras Vet Parasitol 23: 435-442. http://dx.doi.org/10.1590/S1984-29612014082

Khrolova OR, Kunavin NI, Komlev IV, Tavrizova MA (1984) Spectral and luminescence properties of phosphorylmethyl derivatives of 3-aminobenzathrone. J Appl Spectr 41: 771-775. https://doi.org/10.1007/BF00657690

Kirilova E, Kalnina I, Kirilov G, Gorbenko G (2012) Fluorescent biomarker in colorectal cancer. In Colorecatal cancer biology - from genesis to tumor. Ettarh R. eds, pp 429-446. China, InTech. https://doi.org/10.5772/28733

Kirilova EM, Belyakov SV, Kalnina I (2009) Synthesis and study of N,N-substituted 3 amidinobenzanthrones. In Topics in Chemistry & Materials Science. Vayssilov G, Nikolova R eds, pp 19-28. Heron Press.

Kirilova EM, Kalnina I, Kirilov GK, Meirovics I (2008) Spectroscopic study of benz¬anthrone 3-N-derivatives as new hydrophobic fluorescent probes for biomolecules. J Fluoresc 18: 645-648. https://doi.org/10.1007/s10895-008-0340-3

Krasovitsky BM, Bolotin BM (1988) Organic luminescent materials. NY, VCH Publishers.

Krupenko DY (2014) Muscle system of Diplodiscus subclavatus (Trematoda: Paramphistomida) cercariae, pre-ovigerous, and ovigerous adults. Parasitol Res 113: 941–952. https://doi.org/10.1007/s00436-013-3726-3

Monica M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11: 1387-2656. https://doi.org/10.1016/S1387-2656(05)11007-2

Oda T, Namba, Maéda Y (2005) Position and orientation of phalloidin in F-actin determined by x-ray fiber diffraction analysis. Biophys J 88: 2727–2736. http://dx.doi.org/10.1529/biophysj.104.047753

Petney TN, Andrews RH, Saijuntha W, Wenz-Mücke A, Sithithaworn P (2013) The zoonotic, fish-borne liver flukes Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini. Int J Parasitol 43: 1031–1046. http://dx.doi.org/10.1016/j.ijpara.2013.07.007

Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75: 277–293. https://doi.org/10.1086/393500

Rozario T, Newmark PA (2015) A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp Parasitol 158: 31–41. https://doi.org/10.1016/j.exppara.2015.05.015

Ryzhova O, Vus K, Trusova V, Kirilova E, Kirilov G, Gorbenko G, Kinnunen P (2016) Novel benzanthrone probes for membrane and protein studies. Methods Appl Fluoresc 4: 034007. https://doi.org/10.1088/2050-6120/4/3/034007

Sgouros D, Pellacani G, Katoulis A, Rigopoulos D, Longo C (2014) Confocal microscopy in diagnosis and management of melasma: review of literature. J Pigment Disord S1: 004. http://dx.doi.org/10.4172/JPD.S1-005

Shigin AA (1996) Morphological criteria of the species in cercaria of the genus Diplostomum (Trematoda: Diplostomidae) and methods for their study. Parazitologija 30: 425-439.

Souza J, Garcia J, Neves RH, Machado-Silva JR, Maldonado A (2013) In vitro excystation of Echinostoma paraensei (Digenea: Echinostomatidae) metacercariae assessed by light microscopy, morphometry and confocal laser scanning microscopy. Exp Parasitol 135: 701-707. https://doi.org/10.1016/j.exppara.2013.10.009

Souza J, Garcia JS, Mansob PP, Nevesc RH, Maldonado A Jr, Machado-Silva JR (2011) Development of the reproductive system of Echinostoma paraensei in Mesocricetus auratus analyzed by light and confocal scanning laser microscopy. Exp Parasitol 128: 341– 346. https://doi.org/10.1016/j.exppara.2011.04.005

Trusova V, Kirilova E, Kalnina I, Kirilov G, Zhytniakivska O, Fedorov P, Gorbenko G (2012) Novel benzanthrone aminoderivatives for membrane studies. J Fluoresc 22: 953-959. https://doi.org/10.1007/s10895-011-1035-8

Van der Berg A, Olthuis W, Bergveld P (2000) Micro total analysis systems 2000. Dordrecht, Springer. https://doi.org/10.1007/978-94-017-2264-3

Vus K, Trusova V, Gorbenko G, Sood R, Kirilova E, Kirilov G, Kalnina I, Kinnunen P (2014) Fluorescence investigation of interactions between novel benzanthrone dyes and lysozyme amyloid fibrils. J Fluoresc 24: 493–504. https://doi.org/10.1007/s10895-013-1318-3

Wu S, Dovichi NJ (1989) High-sensitivity fluorescence detector for fluorescein isothiocyanate derivatives of amino acids separated by capillary zone electrophoresis. J Chromatogr A 480: 141 – 155. https://doi.org/10.1016/S0021-9673(01)84284-9

Yang X, Liu W-H, Jin W-J, Shen G-L, Yu R-Q (1999) DNA binding studies of a solvatochromic fluorescence probe 3-methoxybenzanthrone. Spectrochim Acta A 55: 2719-2727. https://doi.org/10.1016/S1386-1425(99)00161-4

Zhytniakivska O, Trusova V, Gorbenko G, Kirilova E, Kalnina I, Kirilov G, Molotkovsky J, Tulkki J, Kinnunen P (2014) Location of novel benzanthrone dyes in model membranes as revealed by resonance energy transfer. J Fluoresc 24: 899-907. https://doi.org/10.1007/s10895-014-1370-7

Zhytniakivska O, Trusova V, Gorbenko G, Kirilova E, Kirilov G, Kalnina I, Kinnunen P (2014) Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes. J Luminesc 146: 307-313. https://doi.org/10.1016/j.jlumin.2013.10.015

Published
2018-08-27
Section
Articles