The interaction of new oxicam derivatives with lipid bilayers as measured by calorimetry and fluorescence spectroscopy

  • Jadwiga Maniewska Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
  • Justyna Gąsiorowska Department of Biophysics, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
  • Berenika Marta Szczęśniak-Sięga Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
  • Krystyna Michalak Department of Biophysics, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
Keywords: oxicam derivatives, NSAIDs analogues, piroxicam, 1, 2- benzothiazine derivatives synthesis, model lipid bilayers, differential scanning calorimetry (DSC), fluorescence spectroscopy

Abstract

The purpose of the present work was to assess the ability of five new oxicam analogues to interact with the lipid bilayers. To characterize the interaction of newly synthesized NSAIDs (non-steroidal anti-inflammatory drugs) analogues with DPPC lipid bilayers the two following techniques were applied – differential scanning calorimetry (DSC) and fluorescence spectroscopy. The results obtained by these experimental approaches show that new oxicams analogues interact with the lipid model membranes under consideration. As demonstrated both in calorimetric and spectroscopic studies, the greatest influence on the thermotropic properties of the lipid membrane and on the quenching of fluorescence of Laurdan and Prodan was exerted by a derivative named PR47 containing in its structure a two–carbon aliphatic linker with a carbonyl group, as well as bromine and trifluoromethyl substituents.

References

Bagatolli LA, Parasassi T, Fidelio GD & Gratton E (1999). A model for the interaction of

-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for

spectral properties. Photochem. Photobiol., 70: 557-564.

Chakraborty H, Chakraborty PK, Raha S, Mandal PC, Sarkar M. (2007) Interaction of piroxicam with mitochondrial membrane and cytochrome c. Biochim Biophys Acta. 1768 (5): 1138–1145. doi: 10.1016/j.bbamem.2007.01.004

de Groot DJA, de Vries EGE, Groen HJM, de Jong S (2007). Non-steroidal anti-inflammatory drugs to potentiate chemotherapy effects: from lab to clinic. Crit. Rev. Oncol. Hematol. 61 (1): 52–69. doi: 10.1016/j.critrevonc.2006.07.001

Dixon DA, Blanco FF, Bruno A, Patrignani P (2013) Mechanistic as¬pects of cox-2 expression in colorectal neoplasia. Recent Results Can¬cer Res 191: 7–37. doi:10.1007/978-3-642-30331-9_2

Ghosh N, Chaki R, Mandal V, Mandal SC (2010) COX-2 as a target for cancer chemotherapy. Pharmacol Rep.62 (2): 233–244.

Jain KJ Wu NM (1977) Effect of small molecules on the Dipalmitoyl Lecithin Liposomal Bilayer: Phase Transition in Lipid Bilayer. J. Membrane Biol. 34: 157–201.

Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a Membrane Surface Fluorescence Probe: Partitioning between Water and Phospholipid Phases, Biophysical Journal 74: 1984–1993. doi: 10.1016/S0006-3495(98)77905-6

Krzyżak E, Szczęśniak-Sięga B, Malinka W (2014) Synthesis and thermal behaviour of new benzo-1,2-thiazine long-chain aryl-piperazine derivatives. Journal of Thermal Analysis and Calorimetry 115 (1): 793–802. doi: 10.1007/s10973-013-3185-1

Kyrikou I., Hadjikakou S.K., Kovala-Demertzi D., Viras K., Mavromoustakos T. (2004) Effects of non-steroid anti-inflammatory drugs in membrane bilayers. Chem Phys Lipids. 132 (2): 157–169. doi: 10.1016/j.chemphyslip.2004.06.005

Lakowicz JR: Principles of Fluorescence Spectroscopy. 3rd edn., Springer, Heidelberg, New York 2006. ISBN 978-0-387-46312-4

Lichtenberger LM, Zhou Y, Jayaraman V, Doyen JR, O'Neil RG, Dial EJ, Volk DE, Gorenstein DG, Boggara MB, Krishnamoorti R (2012) Insight into NSAID-induced membrane alterations, pathogenesis and therapeutics: characterization of interaction of NSAIDs with phosphatidylcholine. Biochim Biophys Acta. 1821 (7): 994–1002, doi: 994–1002. 10.1016/j.bbalip.2012.04.002.

Lúcio M, Lima JL, Reis S (2010) Drug-membrane interactions: significance for medicinal chemistry. Curr Med Chem. 17 (17): 1795–1809. doi: 10.2174/092986710791111233

Maniewska J, Szczęśniak-Sięga B, Poła A, Środa-Pomianek K, Malinka W, Michalak K (2014) The interaction of new piroxicam analogues with lipid bilayers – a calorimetric and fluorescence spectroscopic study. Acta Poloniae Pharmaceutica – Drug Research. 71 (6): 1004–1012.

Mbonye UR, Wada M, Rieke CJ, Tang HY, Dewitt DL, Smith WL (2006) The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J Biol Chem. 281 (47): 35770–35778. doi: 10.1074/jbc.M608281200

Nunes C, Brezesinski G, Pereira-Leite C, Lima JL, Reis S, Lúcio M (2011) NSAIDs interactions with membranes: a biophysical approach. Langmuir. 27 (17): 10847–10858. doi: 10.1021/la201600y

Park JH, McMillan DC, Horgan PG, Roxburgh CS (2014) The im¬pact of anti-inflammatory agents on the outcome of patients with colorectal cancer. Cancer Treat Rev 40: 68–77. doi: 10.1016/j. ctrv.2013.05.006

Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 6 (5): 1264–1275. doi: 10.1021/mp9000662.

Peetla C, Vijayaraghavalu S, Labhasetwar V (2013) Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles Adv Drug Deliv Rev. 65: 1686–1698 doi: 10.1016/j.addr.2013.09.004.

Pereira-Leite C, Nunes C, Reis S (2013) Interaction of nonsteroidal anti-inflammatory drugs with membranes: in vitro assessment and relevance for their biological actions. Prog Lipid Res. 52 (4): 571–584. doi: 10.1016/j.plipres.2013.08.003.

Rizzo MT (2011) Cyclooxygenase-2 in oncogenesis. Clin Chim Acta. 412: 671–687. doi: 10.1016/j.cca.2010.12.026.

Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O (2009) Drug interactions with lipid membranes. Chem Soc Rev. 38 (9): 2509–2519. doi: 10.1039/b813853m.

Środa-Pomianek K, Wesołowska O, Szczęśniak-Sięga B, Puła B, Dzięgiel P, Maniewska J, Palko-Łabuz A, Michalak K (2015) Effect of New Oxicam Derivatives on Efflux Pumps Overexpressed in Resistant a Human Colorectal Adenocarcinoma Cell Line. Anticancer Research. 35 (5): 2835–2840.

Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer. 10 (3): 181–193. doi: 10.1038/nrc2809.

Wang D, Dubois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29: 781–788. doi: 10.1038/onc.2009.421

Zhou Y, Hancock JF, Lichtenberger LM (2010) The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action. PLoS One. 5(1): e8811

Xu S, Rouzer CA, Marnett LJ (2014) Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. IUBMB Life. 66 (12): 803–811. doi: 10.1002/iub.1334

Published
2018-07-08
Section
Articles