Circular and long non-coding RNAs and their role in ophthalmologic diseases

  • Olga Wawrzyniak Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
  • Żaneta Zarębska Department of Molecular Neurooncology, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland
  • Katarzyna Rolle Department of Molecular Neurooncology, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan, Poland
  • Anna Gotz-Więckowska Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland

Abstract

Long non-coding RNAs are >200-nucleotide-long RNA molecules which lack or have limited protein-coding potential. They can regulate protein formation through several different mechanisms. Similarly, circular RNAs are reported to play a critical role in post-transcriptional gene regulation. Changes in the expression pattern of these molecules are known to underlie various diseases, including cancer, cardiovascular, neurological and immunological disorders (Rinn & Chang, 2012; Sun & Kraus, 2015). Recent studies suggest that they are differentially expressed both in healthy ocular tissues as well as in eye pathologies, such as neovascularization, proliferative vitreoretinopathy, glaucoma, cataract, ocular malignancy or even strabismus (Li et al., 2016). Aetiology of ocular diseases is multifactorial and combines genetic and environmental factors, including epigenetic and non-coding RNAs. In addition, disorders like diabetic retinopathy or age-related macular degeneration lack biomarkers for early detection as well as effective treatment methods that would allow controlling the disease progression at its early stages. The newly discovered non-coding RNAs seem to be the ideal candidates for novel molecular markers and therapeutic strategies. In this review, we summarized the current knowledge about gene expression regulators – long non-coding and circular RNA molecules in eye diseases.

References

Abu-Amero K, Kondkar AA, Chalam KV (2015) An Updated Review on the Genetics of Primary Open Angle Glaucoma. Int J Mol Sci 16: 28886-28911. http://doi.org/10.3390/ijms161226135

Chen B, Ma J, Li C, Wang Y (2018) Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelialmesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Mol Med Rep. http://doi.org/10.3892/mmr.2018.8987

Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20: 908-913. http://doi.org/10.1038/nsmb.2591

Fan J, Xing Y, Wen X, Jia R, Ni H, He J, Ding X, Pan H, Qian G, Ge S, Hoffman AR, Zhang H, Fan X (2015) Long non-coding RNA ROR decoys gene-specific histone methylation to promote tumorigenesis. Genome Biol 16: 139. http://doi.org/10.1186/s13059-015-0705-2

Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102-114. http://doi.org/10.1038/nrg2290

Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L, Turajlic S, Piperno-Neumann S, de la Grange P, Roman-Roman S, Stern MH, Marais R (2013) SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 3: 1122-1129. http://doi.org/10.1158/2159-8290.CD-13-0330

Gao Y, Lu X (2016) Decreased expression of MEG3 contributes to retinoblastoma progression and affects retinoblastoma cell growth by regulating the activity of Wnt/beta-catenin pathway. Tumour Biol 37: 1461-1469. http://doi.org/10.1007/s13277-015-4564-y

Gauthier AC, Liu J (2017) Epigenetics and Signaling Pathways in Glaucoma. Biomed Res Int 2017: 5712341. http://doi.org/10.1155/2017/5712341

Gong Q, Su G (2017) Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 37. http://doi.org/10.1042/BSR20171157

Huang J, Li YJ, Liu JY, Zhang YY, Li XM, Wang LN, Yao J, Jiang Q, Yan B (2015) Identification of corneal neovascularization-related long noncoding RNAs through microarray analysis. Cornea 34: 580-587. http://doi.org/10.1097/ICO.0000000000000389

Kaarniranta K, Salminen A (2009) NF-kappaB signaling as a putative target for omega-3 metabolites in the prevention of age-related macular degeneration (AMD). Exp Gerontol 44: 685-688. http://doi.org/10.1016/j.exger.2009.09.002

Kaneko H, Terasaki H (2017) Biological Involvement of MicroRNAs in Proliferative Vitreoretinopathy. Transl Vis Sci Technol 6: 5. http://doi.org/10.1167/tvst.6.4.5

Li CP, Wang SH, Wang WQ, Song SG, Liu XM (2017a) Long Noncoding RNA-Sox2OT Knockdown Alleviates Diabetes Mellitus-Induced Retinal Ganglion Cell (RGC) injury. Cell Mol Neurobiol 37: 361-369. http://doi.org/10.1007/s10571-016-0380-1

Li F, Wen X, Zhang H, Fan X (2016) Novel Insights into the Role of Long Noncoding RNA in Ocular Diseases. Int J Mol Sci 17: 478. http://doi.org/10.3390/ijms17040478

Li G, Song H, Chen L, Yang W, Nan K, Lu P (2017b) TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract. Exp Cell Res 356: 20-27. http://doi.org/10.1016/j.yexcr.2017.04.002

Liu C, Li CP, Wang JJ, Shan K, Liu X, Yan B (2016) RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis. Biochem Biophys Res Commun 479: 198-203. http://doi.org/10.1016/j.bbrc.2016.09.032

Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3: eaao2110. http://doi.org/10.1126/sciadv.aao2110

Ma WX, Huang XG, Yang TK, Yao JY (2018) Involvement of dysregulated coding and long noncoding RNAs in the pathogenesis of strabismus. Mol Med Rep 17: 7737-7745. http://doi.org/10.3892/mmr.2018.8832

Meola N, Pizzo M, Alfano G, Surace EM, Banfi S (2012) The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA 18: 111-123. http://doi.org/10.1261/rna.029454.111

Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114: 1389-1397. http://doi.org/10.1161/CIRCRESAHA.114.303265

Nakano M, Ikeda Y, Tokuda Y, Fuwa M, Omi N, Ueno M, Imai K, Adachi H, Kageyama M, Mori K, Kinoshita S, Tashiro K (2012) Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One 7: e33389. http://doi.org/10.1371/journal.pone.0033389

Neely KA, Gardner TW (1998) Ocular neovascularization: clarifying complex interactions. Am J Pathol 153: 665-670. http://doi.org/10.1016/S0002-9440(10)65607-6

Pradhan P, Upadhyay N, Tiwari A, Singh LP (2016) Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. New Front Ophthalmol 2: 192-204. http://doi.org/10.15761/NFO.1000145

Qiu GZ, Tian W, Fu HT, Li CP, Liu B (2016) Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem Biophys Res Commun 471: 135-141. http://doi.org/10.1016/j.bbrc.2016.01.164

Rapicavoli NA, Poth EM, Blackshaw S (2010) The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 10: 49. http://doi.org/10.1186/1471-213X-10-49

Ren C, An G, Zhao C, Ouyang Z, Bo X, Shu W (2018) Lnc2Catlas: an atlas of long noncoding RNAs associated with risk of cancers. Sci Rep 8: 1909. http://doi.org/10.1038/s41598-018-20232-4

Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81: 145-166. http://doi.org/10.1146/annurev-biochem-051410-092902

Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8: 73271-73281. http://doi.org/10.18632/oncotarget.19154

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7: e30733. http://doi.org/10.1371/journal.pone.0030733

Shan K, Liu C, Liu BH, Chen X, Dong R, Liu X, Zhang YY, Liu B, Zhang SJ, Wang JJ, Zhang SH, Wu JH, Zhao C, Yan B (2017) Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus. Circulation 136: 1629-1642. http://doi.org/10.1161/CIRCULATIONAHA.117.029004

Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H, Jiang Q, Yan B (2016) Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med 20: 537-548. http://doi.org/10.1111/jcmm.12755

Shiga Y, Nishiguchi KM, Kawai Y, Kojima K, Sato K, Fujita K, Takahashi M, Omodaka K, Araie M, Kashiwagi K, Aihara M, Iwata T, Mabuchi F, Takamoto M, Ozaki M, Kawase K, Fuse N, Yamamoto M, Yasuda J, Nagasaki M, Nakazawa T, Japan Glaucoma Society Omics G (2017) Genetic analysis of Japanese primary open-angle glaucoma patients and clinical characterization of risk alleles near CDKN2B-AS1, SIX6 and GAS7. PLoS One 12: e0186678. http://doi.org/10.1371/journal.pone.0186678

Su S, Gao J, Wang T, Wang J, Li H, Wang Z (2015) Long non-coding RNA BANCR regulates growth and metastasis and is associated with poor prognosis in retinoblastoma. Tumour Biol 36: 7205-7211. http://doi.org/10.1007/s13277-015-3413-3

Sun M, Kraus WL (2015) From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 36: 25-64. http://doi.org/10.1210/er.2014-1034

Tan GC (2014) The History of RNAi and MicroRNA Discovery. Med & Health 9: 2.

Wan P, Su W, Zhuo Y (2017) Precise long non-coding RNA modulation in visual maintenance and impairment. J Med Genet 54: 450-459. http://doi.org/10.1136/jmedgenet-2016-104266

Wang C, Wang L, Ding Y, Lu X, Zhang G, Yang J, Zheng H, Wang H, Jiang Y, Xu L (2017) LncRNA Structural Characteristics in Epigenetic Regulation. Int J Mol Sci 18. http://doi.org/10.3390/ijms18122659

Wang JJ, Shan K, Liu BH, Liu C, Zhou RM, Li XM, Dong R, Zhang SJ, Zhang SH, Wu JH, Yan B (2018) Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration. Cell Death Dis 9: 540. http://doi.org/10.1038/s41419-018-0597-7

Xu XD, Li KR, Li XM, Yao J, Qin J, Yan B (2014) Long non-coding RNAs: new players in ocular neovascularization. Mol Biol Rep 41: 4493-4505. http://doi.org/10.1007/s11033-014-3320-5

Yan B, Yao J, Tao ZF, Jiang Q (2014) Epigenetics and ocular diseases: from basic biology to clinical study. J Cell Physiol 229: 825-833. http://doi.org/10.1002/jcp.24522

Yang S, Yao H, Li M, Li H, Wang F (2016) Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells. PLoS One 11: e0152687. http://doi.org/10.1371/journal.pone.0152687

Yonekawa Y, Miller JW, Kim IK (2015) Age-Related Macular Degeneration: Advances in Management and Diagnosis. J Clin Med 4: 343-359. http://doi.org/10.3390/jcm4020343

Young TL, Matsuda T, Cepko CL (2005) The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol 15: 501-512. http://doi.org/10.1016/j.cub.2005.02.027

Yue Y, Zhang J, Yang L, Liu S, Qi J, Cao Q, Zhou C, Wang Y, Kijlstra A, Yang P, Hou S (2018) Association of Long Noncoding RNAs Polymorphisms With Ankylosing Spondylitis, Vogt-Koyanagi-Harada Disease, and Behcet's Disease. Invest Ophthalmol Vis Sci 59: 1158-1166. http://doi.org/10.1167/iovs.17-23247

Zhang J, Chen M, Chen J, Lin S, Cai D, Chen C, Chen Z (2017a) Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep 37. http://doi.org/10.1042/BSR20170036

Zhang SJ, Chen X, Li CP, Li XM, Liu C, Liu BH, Shan K, Jiang Q, Zhao C, Yan B (2017b) Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy. Invest Ophthalmol Vis Sci 58: 6500-6509. http://doi.org/10.1167/iovs.17-22698

Zhang Y, Cai S, Jia Y, Qi C, Sun J, Zhang H, Wang F, Cao Y, Li X (2017c) Decoding Noncoding RNAs: Role of MicroRNAs and Long Noncoding RNAs in Ocular Neovascularization. Theranostics 7: 3155-3167. http://doi.org/10.7150/thno.19646

Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, Wei F, Guo C, Wu X, Li X, Li Y, Li G, Zeng Z, Xiong W (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17: 79. http://doi.org/10.1186/s12943-018-0827-8

Zhou RM, Wang XQ, Yao J, Shen Y, Chen SN, Yang H, Jiang Q, Yan B (2015) Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochem Biophys Res Commun 465: 324-330. http://doi.org/10.1016/j.bbrc.2015.07.120

Zhu W, Meng YF, Xing Q, Tao JJ, Lu J, Wu Y (2017) Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int J Nanomedicine 12: 7589-7602. http://doi.org/10.2147/IJN.S140275

Published
2018-11-14
Section
Articles