Genetically determined metabolism of nicotine and its clinical significance
Abstract
Enzymes of the cytochrome P-450 (CYP 450) which belong to the family of oxidase enzymes, are present in cells of all organisms and play a major role in the first phase of xenobiotic metabolism. There are several isoenzymes of CYP 450 that show differences in the speed of metabolism: poor-, extensive- and ultra-rapid. Nicotine undergoes biotransformation in the liver mainly by the CYP2A6 isoform of CYP 450. There are many polymorphic isoforms of CYP2A6 affecting the metabolism of nicotine. There are also several CYP2A6 activity inhibitors and inducers among commonly used drugs. The ability of CYP2A6 isozymes to activate certain procancerogenic substances present in cigarette smoke makes their polymorphism more significant. Moreover, some isoforms may have also influence on the risk of lung cancer development by affecting the enzymatic activation of tobacco-specific nitrosamines. Metabolism of nicotine, mainly through CYP2A6, has also many clinical implications, such as efficacy and safety of the nicotine replacement therapy (NRT) or occurrence of several diseases. In summary, type of the nicotine metabolism may be a potential predictor of the clinical outcomes in patients with cardiovascular disease, addicted to nicotine and in those using NRT. The purpose of this work is to summarize current knowledge on variation in genetically determined metabolism of nicotine and its clinical significance.
References
Al Koudsi N, Ahluwalia JS, Lin SK, Sellers EM, Tyndale RF (2009) A novel CYP2A6 allele (CYP2A6*35) resulting in an amino-acid substitution (Asn438Tyr) is associated with lower CYP2A6 activity in vivo. Pharmacogenomics J 9(4): 274-282. DOI: 10.1038/tpj.2009.11
Audrain-McGovern J, Al Koudsi N, Rodriguez D, Wileyto EP, Shields PG, Tyndale RF (2007) The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatrics 119(1): 264-274. DOI: 10.1542/peds.2006-1583
Benowitz NL, Zevin S, P. Jacob, 3rd (1997) Sources of variability in nicotine and cotinine levels with use of nicotine nasal spray, transdermal nicotine, and cigarette smoking. Br J Clin Pharmacol 43(3): 259-267.
Benowitz NL, Swan GE, Jacob P 3rd, Lessov-Schlaggar CN, Tyndale RF (2006) CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther 80(5): 457-467. DOI: 10.1016/j.clpt.2006.08.011
Benowitz NL, Hukkanen J, Jacob P 3rd (2009) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 192: 29-60. DOI: 10.1007/978-3-540-69248-5_2
Berkman CE, Park SB, Wrighton SA, Cashman JR (1995) In vitro-in vivo correlations of human (S)-nicotine metabolism. Biochem Pharmacol 50(4): 565-570.
Cashman JR, Park SB, Yang ZC, Wrighton SA, Jacob P 3rd,
Benowitz NL (1992) Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N'-oxide. Chem Res Toxicol 5(5): 639-646.
Cholerton S, Daly AK, Idle JR (1992) The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci 13(12): 434-439.
Crawford EL, Weaver DA, DeMuth JP, Jackson CM, Khuder SA, Frampton MW, Utell MJ, Thilly WG, Willey JC. (1998) Measurement of cytochrome P450 2A6 and 2E1 gene expression in primary human bronchial epithelial cells. Carcinogenesis 19(10): 1867-1871.
Damaj MI, Siu EC, Sellers EM, Tyndale RF, Martin BR. (2007) Inhibition of nicotine metabolism by methoxysalen: Pharmacokinetic and pharmacological studies in mice. J Pharmacol Exp Ther 320(1): 250-257. DOI: 10.1124/jpet.106.111237
Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, Benowitz NL (2004) Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther 76(1): 64-72. DOI: 10.1016/j.clpt.2004.02.011
Di YM, Chow VD, Yang LP, Zhou SF (2009) Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab 10(7): 754-780.
Draper AJ, Madan A, Parkinson A (1997) Inhibition of coumarin 7- hydroxylase activity in human liver microsomes. Arch Biochem Biophys 341(1): 47-61.
Fernandez-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang JD, Evans WE, Idle JR, et al. (1995) A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet 57(3): 651-660.
Fukami T, Nakajima M, Yoshida R, Tsuchiya Y, Fujiki Y, Katoh M, McLeod HL, Yokoi T (2004) A novel polymorphism of human CYP2A6 gene CYP2A6*17 has an amino acid substitution (V365M) that decreases enzymatic activity in vitro and in vivo. Clin Pharmacol Ther 76(6): 519-527. DOI: 10.1016/j.clpt.2004.08.014
Fukami, T, Nakajima M, Higashi E, Yamanaka H, Sakai H, McLeod HL, Yokoi T (2005) Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity. Drug Metab Dispos 33(8): 1202-1210. DOI: 10.1124/dmd.105.004994
Gaedigk A, Ingelman-Sundberg M, Miller NA, Leeder JS, Whirl-Carrillo M, Klein TE; PharmVar Steering Committee (2018) The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin Pharmacol Ther 103(3): 399-401. DOI: 10.1002/cpt.910.
Gambier N, Batt AM, Marie B, Pfister M, Siest G, Visvikis-Siest S (2005) Association of CYP2A6*1B genetic variant with the amount of smoking in French adults from the Stanislas cohort. Pharmacogenomics J 5(4): 271-275. DOI: 10.1038/sj.tpj.6500314
Gu DF, Hinks LJ, Morton NE, Day IN (2000) The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit. Ann Hum Genet 64(5): 383-390.
Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8(1): 101-111. DOI: 10.1208/aapsj080112
Hecht SS, Hochalter JB, Villalta PW, Murphy SE (2000) 2'-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor. Proc Natl Acad Sci U S A 97(23): 12493-12497. DOI: 10.1073/pnas.220207697
Ho MK, Mwenifumbo JC, Al Koudsi N, Okuyemi KS, Ahluwalia JS, Benowitz NL, Tyndale RF. (2009) Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clin Pharmacol Ther 85(6): 635-643. DOI: 10.1038/clpt.2009.19
Hukkanen JP, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57(1): 79-115. DOI: 10.1124/pr.57.1.3
Kharasch ED, Hankins DC, Taraday JK (2000) Single dose methoxsalen effects on human cytochrome P-450 2A6 activity. Drug Metab Dispos 28(1): 28-33.
Kimonen, T, Juvonen RO, Alhava E, Pasanen M (1995) The inhibition of CYP enzymes in mouse and human liver by pilocarpine. Br J Pharmacol 114: 832-836.
Koenigs LL, Peter RM, Thompson SJ, Rettie AE, Trager WF (1997) Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen. Drug Metab Dispos 25(12): 1407-1415.
Korhonova M, Doricakova A, Dvorak Z (2015) Optical isomers of atorvastatin, rosuvastatin and fluvastatin enantiospecifically activate pregnane X receptor PXR and induce CYP2A6, CYP2B6 and CYP3A4 in human hepatocytes. PLoS ONE 10(9): 0137720. DOI: 10.1371/journal.pone.0137720
Kosmider L, Delijewski M, Koszowski B, Sobczak A, Benowitz NL, Goniewicz ML (2017) Slower nicotine metabolism among postmenopausal Polish smokers. Pharmacol Rep 70(3): 434-438. DOI: 10.1016/j.pharep.2017.11.009
Kubota T, Nakajima-Taniguchi C, Fukuda T, Funamoto M, Maeda M, Tange E, Ueki R, Kawashima K, Hara H, Fujio Y, Azuma J (2006) CYP2A6 polymorphisms are associated with nicotine dependence and influence withdrawal symptoms in smoking cessation. Pharmacogenomics J 6(2): 115-119. DOI: 10.1038/sj.tpj.6500348
Lerman, C, Tyndale R, Patterson F, Wileyto EP, Shields PG, Pinto A, Benowitz N (2006) Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther 79(6): 600-608. DOI: 10.1016/j.clpt.2006.02.006
Liu T, David SP, Tyndale RF, Wang H, Zhou Q, Ding P, He YH, Yu XQ, Chen W, Crump C, Wen XZ, Chen WQ (2011) Associations of CYP2A6 genotype with smoking behaviors in southern China. Addiction 106(5): 985-994. DOI: 10.1111/j.1360-0443.2010.03353.x
London SJ, Idle JR, Daly AK, Coetzee GA. (1999) Genetic variation of CYP2A6, smoking, and risk of cancer. Lancet 353(9156): 898-899. DOI: 10.1016/S0140-6736(98)04984-8
Ma MK, Woo MH, McLeod HL (2002) Genetic basis of drug metabolism. Am J Health Syst Pharm 59(21): 2061-2069.
Maurice M, Emiliani S, Dalet-Beluche I, Derancourt J, Lange R. (1991) Isolation and characterization of a cytochrome P450 of the IIA subfamily from human liver microsomes. Eur J Biochem 200: 511-517.
Minematsu N, Nakamura H, Furuuchi M, Nakajima T, Takahashi S, Tateno H, Ishizaka A (2006) Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. Eur Respir J 27(2): 289-292. DOI: 10.1183/09031936.06.00056305
Miyamoto M, Umetsu Y, Dosaka-Akita H, Sawamura Y, Yokota J, Kunitoh H, Nemoto N, Sato K, Ariyoshi N, Kamataki T (1999) CYP2A6 gene deletion reduces susceptibility to lung cancer. Biochem Biophys Res Commun 261(3): 658-660. DOI: 10.1006/bbrc.1999.1089
Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, Funae Y, Shimada N, Kamataki T, Kuroiwa Y (1996) Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 24(11): 1212-1217.
Nakajima M, Yamagishi S, Yamamoto H, Yamamoto T, Kuroiwa Y, Yokoi T (2000) Deficient cotinine formation from nicotine is attributed to the whole deletion of the CYP2A6 gene in humans. Clin Pharmacol Ther 67(1): 57-69. DOI: 10.1067/mcp.2000.103957
Nakajima, M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshida R, Kwon JT, McLeod HL, Yokoi T (2006) Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther 80(3): 282-297. DOI: 10.1016/j.clpt.2006.05.012
O'Loughlin J, Paradis G, Kim W, DiFranza J, Meshefedjian G, McMillan-Davey E, Wong S, Hanley J, Tyndale RF (2004) Genetically decreased CYP2A6 and the risk of tobacco dependence: a prospective study of novice smokers. Tob Control 13(4): 422-428. DOI: 10.1136/tc.2003.007070
Onica, T, Nichols K, Larin M, Ng L, Maslen A, Dvorak Z, Pascussi JM, Vilarem MJ, Maurel P, Kirby GM (2008) Dexamethasone-mediated up-regulation of human CYP2A6 involves the glucocorticoid receptor and increased binding of hepatic nuclear factor 4α to the proximal promoter. Mol Pharmacol 73(2): 451-460. DOI: 10.1124/mol.107.03935
Oscarson, M, McLellan RA, Gullstén H, Agúndez JA, Benítez J, Rautio A, Raunio H, Pelkonen O, Ingelman-Sundberg M (1999) Identification and characterisation of novel polymorphisms in the CYP2A locus: implications for nicotine metabolism. FEBS Lett 460(2): 321-327.
Purnapatre K, Khattar SK, Saini KS (2008) Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 259(1): 1-15. DOI: 10.1016/j.canlet.2007.10.024
Rae JM, Johnson MD, Lippman ME, Flockhart DA (2001) Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 299(3): 849-857.
Raunio H, Rautio A, Gullsten H, Pelkonen O (2001) Polymorphisms of CYP2A6 and its practical consequences. Br J Clin Pharmacol 52(4): 357-363.
Sadeque AJ, Fisher MB, Korzekwa KR, Gonzalez FJ, Rettie AE (1997) Human CYP2C9 and CYP2A6 mediate formation of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 283(2): 698-703.
Sellers EM, Kaplan HL, Tyndale RF (2000) Inhibition of cytochrome P450 2A6 increases nicotine's oral bioavailability and decreases smoking. Clin Pharmacol Ther 68(1): 35-43. DOI: 10.1067/mcp.2000.107651
Sellers EM, Tyndale RF (2000) Mimicking gene defects to treat drug dependence. Ann N Y Acad Sci 909: 233-246.
Sellers EM, Tyndale RF, Fernandes LC (2003) Decreasing smoking behaviour and risk through CYP2A6 inhibition. Drug Discov Today 8(11): 487-493.
Siedlinski, M, Cho MH, Bakke P, Gulsvik A, Lomas DA, Anderson W, Kong X, Rennard SI, Beaty TH, Hokanson JE, Crapo JD, Silverman EK, COPDGene Investigators, ECLIPSE Investigators (2011) Genome-wide association study of smoking behaviours in patients with COPD. Thorax 66(10): 894-902. DOI: 10.1136/thoraxjnl-2011-200154
Siu EC, Tyndale RF (2008) Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 324(3): 992-999. DOI: 10.1124/jpet.107.133900
Su, T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X. (2000) Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 60(18): 5074-5079.
Swan GE, Lessov-Schlaggar CN, Bergen AW, He Y, Tyndale RF, Benowitz NL (2009) Genetic and environmental influences on the ratio of 3'hydroxycotinine to cotinine in plasma and urine. Pharmacogenet Genomics 19(5): 388-398. DOI: 10.1097/FPC.0b013e32832a404f
Taavitsainen P, Juvonen R, Pelkonen O (2001) In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor, trans-2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cycloprylbenzene. Drug Metab Dispos 29(3): 217-222.
Tyndale RF, Pianezza ML, Sellers EM (1999) A common genetic defect in nicotine metabolism decreases risk for dependence and lowers cigarette consumption. Nicotine Tob Res 1: 63-7; 69-70.
Tyndale RF, Sellers EM (2002) Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Ther Drug Monit 24(1): 163-171.
Wassenaar CA, Dong Q, Amos CI, Spitz MR, Tyndale RF (2013) Pilot Study of CYP2B6 Genetic Variation to Explore the Contribution of Nitrosamine Activation to Lung Carcinogenesis. Int J Mol Sci 14(4): 8381-8392. DOI: 10.3390/ijms14048381
Yoshida, R, Nakajima M, Watanabe Y, Kwon JT, Yokoi T (2002) Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. Br J Clin Pharmacol 54(5): 511-517.
Zuber R, Anzenbacherova E, Anzenbacher P (2002) Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med 6(2): 189-198.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.