Kidney injury by cyclosporine A is aggravated in heme oxygenase-1 deficient mice and involves regulation of microRNAs

  • Agnieszka Łoboda Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Olga Mucha Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Paulina Podkalicka Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Mateusz Sobczak Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Anna Miksza-Cybulska Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Patrycja Kaczara Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Alicja Jozkowicz Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Jozef Dulak 1Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; 2Kardio-Med Silesia, Zabrze, Poland

Abstract

Cyclosporine A (CsA), a widely used immunosuppressive drug, exerts nephrotoxic activities, as demonstrated by increased tubulointerstitial fibrosis, inflammation and podocyte damage. Recently, a number of microRNAs expressed in the kidney have been reported to be elevated during renal damage. Our aim was to investigate the effect of CsA on selected microRNAs in the mouse kidney after CsA treatment. Moreover, as heme oxygenase-1 (HO-1, encoded by the Hmox1 gene) was shown to play a protective role during kidney disorders, we assessed whether HO-1 deficiency in vivo influences the CsA-regulated microRNAs’ expression. We have observed that the pro-fibrotic miR-21 and pro-apoptotic miR-34a expression was upregulated in kidneys of HO-1 deficient mice and it was further enhanced by CsA. Concomitantly, the level of anti-fibrotic microRNAs, belonging to miR-29 and miR-200 families, was down-regulated after CsA treatment. Generally, Hmox1 knock-out (Hmox1–/–) animals were more susceptible to CsA treatment, as the mortality rate was 4 out of 9 Hmox1–/– mice, and increased fibrosis (Tgfb2, Pai1), inflammation (Il6) and apoptosis (Cdkn1a-p21) were noticed in the HO-1 deficient kidneys. In summary, our data demonstrate that CsA induces significant changes in the expression of renal microRNAs and emphasize HO-1 deficiency as an important factor contributing to the CsA-mediated renal toxicity.

References

Bennett WM, DeMattos A, Meyer MM, Andoh T, Barry JM (1996). Chronic cyclosporine nephropathy: the Achilles’ heel of immunosuppressive therapy. Kidney Int. 50: 1089–1100.

Camilleri B, Bridson JM, Halawa A (2016). Calcineurin Inhibitor-Sparing Strategies in Renal Transplantation: Where Are We? A Comprehensive Review of the Current Evidence. Exp. Clin. Transplant. 14: 471–483. doi.org/10.6002/ect.2015.0283

Chen J, Zmijewska A, Zhi D, Mannon RB (2015) Cyclosporine-mediated allograft fibrosis is associated with micro-RNA-21 through AKT signaling. Transpl. Int. 28: 232–245. doi.org/10.1111/tri.12471

Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159. doi.org/10.1006/abio.1987.9999

Ciesla M, Marona P, Kozakowska M, Jez M, Seczynska M, Loboda, A., Bukowska-Strakova, K., Szade A, Walawender, M., Kusior, M., Stepniewski J., Szade, K., Krist, B., Yagensky, O., Urbanik A, Kazanowska B, Dulak J, Jozkowicz A (2016) Heme Oxygenase-1 Controls an HDAC4-miR-206 Pathway of Oxidative Stress in Rhabdomyosarcoma. Cancer Res. 76: 5707–5718. doi.org/10.1158/0008-5472.CAN-15-1883

Correa-Costa M, Semedo P, Monteiro APFS, Silva RC, Pereira RL, Gonçalves GM, Marques GDM, Cenedeze MA, Faleiros ACG, Keller AC, Shimizu MHM, Seguro AC, Reis MA, Pacheco-Silva A, Câmara NOS (2010) Induction of heme oxygenase-1 can halt and even reverse renal tubule-interstitial fibrosis. PloS One 5: e14298. doi.org/10.1371/journal.pone.0014298

Eddy AA (2009) Serine proteases, inhibitors and receptors in renal fibrosis. Thromb. Haemost. 101: 656–664.

Elmarakby AA, Faulkner J, Baban B, Saleh MA, Sullivan JC (2012) Induction of hemeoxygenase-1 reduces glomerular injury and apoptosis in diabetic spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol. 302: F791-800. doi.org/10.1152/ajprenal.00472.2011

Gaede L, Liebetrau C, Blumenstein J, Troidl C, Dörr O, Kim W-K, Gottfried K, Voss S, Berkowitsch A, Walther T, Nef H, Hamm CW, Möllmann H (2016) Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery. Nephrol. Dial. Transplant. 31: 760–766. doi.org/10.1093/ndt/gfw007

Georgakilas AG, Martin OA, Bonner WM (2017) p21: A Two-Faced Genome Guardian. Trends Mol. Med. 23: 310–319. doi.org/10.1016/j.molmed.2017.02.001

Gooch JL, King C, Francis CE, Garcia PS, Bai Y (2017) Cyclosporine A alters expression of renal microRNAs: New insights into calcineurin inhibitor nephrotoxicity. PloS One 12: e0175242. doi.org/10.1371/journal.pone.0175242

Guethoff S, Meiser BM, Groetzner J, Eifert S, Grinninger C, Ueberfuhr P, Reichart B, Hagl C, Kaczmarek I (2013) Ten-year results of a randomized trial comparing tacrolimus versus cyclosporine a in combination with mycophenolate mofetil after heart transplantation. Transplantation 95: 629–634. doi.org/10.1097/TP.0b013e318277e378

Jennings P, Koppelstaetter C, Aydin S, Abberger T, Wolf AM, Mayer G, Pfaller W (2007) Cyclosporine A induces senescence in renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 293: F831-838. doi.org/10.1152/ajprenal.00005.2007

Kozakowska M, Ciesla M, Stefanska A, Skrzypek K, Was H, Jazwa A, Grochot-Przeczek A, Kotlinowski J, Szymula A, Bartelik A, Mazan M, Yagensky O, Florczyk U, Lemke K, Zebzda A, Dyduch G, Nowak W, Szade K, Stepniewski J, Majka M, Derlacz R, Loboda A, Dulak J, Jozkowicz A (2012) Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Antioxid. Redox Signal. 16: 113–127. doi.org/10.1089/ars.2011.3964

Li S-D, Wang L, Wang K-Y, Liang P, Wu G, Zhang K-Q, Li Q-S, Jin F-S (2011) Heme oxygenase-1 expression and its significance for acute rejection following kidney transplantation in rats. Transplant. Proc. 43: 1980–1984. doi.org/10.1016/j.transproceed.2011.03.032

Lim SW, Hyoung BJ, Piao SG, Doh, KC, Chung BH, Yang CW (2012) Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation 94: 218–225. doi.org/10.1097/TP.0b013e31825ace5c

Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016a) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73: 3221–3247. doi.org/10.1007/s00018-016-2223-0

Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J (2008) Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 10: 1767–1812. doi.org/10.1089/ars.2008.2043

Loboda A, Sobczak M, Jozkowicz A, Dulak J (2016b) TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm. 2016: 8319283. doi.org/10.1155/2016/8319283

Loboda A, Stachurska A, Podkalicka P, Sobczak M, Mucha O, Witalisz-Siepracka A, Jozkowicz A, Dulak J (2017a) Effect of heme oxygenase-1 on ochratoxin A-induced nephrotoxicity in mice. Int. J. Biochem. Cell Biol. 84: 46–57. doi.org/10.1016/j.biocel.2017.01.003

Loboda A, Stachurska A, Sobczak M, Podkalicka P, Mucha O, Jozkowicz A, Dulak J (2017b) Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo. Toxicology 389: 42–52. doi.org/10.1016/j.tox.2017.07.004

Metzinger-Le Meuth V, Fourdinier O, Charnaux N, Massy ZA, Metzinger L (2018) The expanding roles of microRNAs in kidney pathophysiology. Nephrol. Dial. Transplant. doi.org/10.1093/ndt/gfy140

Mucha O, Podkalicka P, Czarnek M, Biela A, Mieczkowski M, Kachamakova-Trojanowska N, Stepniewski J, Jozkowicz A, Dulak J, Loboda A (2018) Pharmacological versus genetic inhibition of heme oxygenase-1 - the comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system. Acta Biochim. Pol. 65: 277–286. doi.org/10.18388/abp.2017_2542

Naesens M, Kuypers DRJ, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 4: 481–508. doi.org/10.2215/CJN.04800908

O’Neill JO, Taylor DO, Starling RC (2004) Immunosuppression for cardiac transplantation--the past, present and future. Transplant. Proc. 36: 309S-313S. doi.org/10.1016/j.transproceed.2004.01.010

Pereira MG, Câmara NOS, Campaholle G, Cenedeze MA, de Paula Antunes Teixeira V, dos Reis MA, Pacheco-Silva A (2006) Pioglitazone limits cyclosporine nephrotoxicity in rats. Int. Immunopharmacol. 6: 1943–1951. doi.org/10.1016/j.intimp.2006.07.024

Poss KD, Tonegawa S (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. U. S. A. 94: 10919–10924.

Sansone F, Boffini M, Comoglio C, Checco L, Saviolo R, Centofanti P, La Torre M, Rinaldi M (2010) Results with cyclosporine monotherapy in long-term cardiac transplant recipients. Transplant. Proc. 42: 1291–1293. doi.org/10.1016/j.transproceed.2010.03.126

Shin D, Park H-M, Jung K-A, Choi H-G, Kim J-A, Kim D-D, Kim SG, Kang KW, Ku SK, Kensler TW, Kwak M-K (2010) The NRF2-heme oxygenase-1 system modulates cyclosporin A-induced epithelial-mesenchymal transition and renal fibrosis. Free Radic. Biol. Med. 48: 1051–1063. doi.org/10.1016/j.freeradbiomed.2010.01.021

Skrzypek K, Tertil M, Golda S, Ciesla M, Weglarczyk K, Collet G, Guichard A, Kozakowska M, Boczkowski J, Was H, Gil T, Kuzdzal J, Muchova L, Vitek L, Loboda A, Jozkowicz A, Kieda C, Dulak J (2013) Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid. Redox Signal. 19: 644–660. doi.org/10.1089/ars.2013.5184

Söderlund C, Rådegran G (2015) Immunosuppressive therapies after heart transplantation--The balance between under- and over-immunosuppression. Transplant. Rev. (Orlando) 29: 181–189. doi.org/10.1016/j.trre.2015.02.005

Stachurska A, Ciesla M, Kozakowska M, Wolffram S, Boesch-Saadatmandi C, Rimbach G, Jozkowicz A, Dulak J, Loboda A (2013) Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol. Nutr. Food Res. 57: 504–515. doi.org/10.1002/mnfr.201200456

Stepniewski J, Pacholczak T, Skrzypczyk A, Ciesla M, Szade A, Szade K, Bidanel R, Langrzyk A, Grochowski R, Vandermeeren F, Kachamakova-Trojanowska N, Jez M, Drabik G, Nakanishi M, Jozkowicz A, Dulak J (2018) Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells. IUBMB Life 70: 129–142. doi.org/10.1002/iub.1711

Sun W, Min B, Du D, Yang F, Meng J, Wang W, Zhao J, Tan X, Li Z, Sun J (2017) miR-181c protects CsA-induced renal damage and fibrosis through inhibiting EMT. FEBS Lett. 591: 3588–3599. doi.org/10.1002/1873-3468.12872

Taha H, Skrzypek K, Guevara I, Nigisch A, Mustafa S, Grochot-Przeczek A, Ferdek P, Was H, Kotlinowski J, Kozakowska M, Balcerczyk A, Muchova L, Vitek L, Weigel G, Dulak J, Jozkowicz A (2010) Role of heme oxygenase-1 in human endothelial cells: lesson from the promoter allelic variants. Arterioscler. Thromb. Vasc. Biol. 30: 1634–1641. doi.org/10.1161/ATVBAHA.110.207316

Waiser J, Dell K, Böhler T, Dogu E, Gaedeke J, Budde K, Neumayer H-H (2002) Cyclosporine A up-regulates the expression of TGF-beta1 and its receptors type I and type II in rat mesangial cells. Nephrol. Dial. Transplant. 17: 1568–1577.

Yadav RK, Lee G-H, Lee H-Y, Li, B, Jung, H-E, Rashid H-O, Choi MK, Yadav BK, Kim W-H, Kim K-W, Park B-H, Kim W, Lee Y-C, Kim H-R, Chae H-J (2015) TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy and reduces renal dysfunction in a cyclosporine A-induced nephrotoxicity model. Autophagy 11: 1760–1774. doi.org/10.1080/15548627.2015.1082021

Yuan J, Benway CJ, Bagley J, Iacomini J (2015) MicroRNA-494 promotes cyclosporine-induced nephrotoxicity and epithelial to mesenchymal transition by inhibiting PTEN. Am. J. Transplant. 15: 1682–1691. doi.org/10.1111/ajt.13161

Zhu X-D, Chi J-Y, Liang H-H, Huangfu L-T, Guo Z-D, Zou H, Yin X-H (2016) MicroRNA-377 Mediates Cardiomyocyte Apoptosis Induced by Cyclosporin A. Can. J. Cardiol. 32: 1249–1259. doi.org/10.1016/j.cjca.2015.11.012

Published
2018-11-27
Section
Articles