SNARE proteins and schizophrenia: linking synaptic and neurodevelopmental hypotheses.

  • Reuben D Johnson Department of Physiology, Human Anatomy & Genetics, University of Oxford, Oxford, England. reubenjohnson@doctors.org.uk;
  • Peter L Oliver
  • Kay E Davies

Abstract

Much of the focus of neurobiological research into schizophrenia is based on the concept that disrupted synaptic connectivity underlies the pathology of the disorder. Disruption of synaptic connectivity is proposed to be a consequence of both disrupted synaptic transmission in adulthood and abnormalities in the processes controlling synaptic connectivity during development of the central nervous system. This synaptic hypothesis fits with neurodevelopmental models of schizophrenia and our understanding of the mechanisms of antipsychotic medication. This conceptual model has fostered efforts to define the exact synaptic pathology further. Synaptic proteins are obvious candidates for such studies, and the integral role of the SNARE complex, and SNARE-associated proteins, in synaptic transmission will ensure that it is the focus of much of this research. Significant new insights into the role of this complex are arising from new mouse models of human disease. Here the evidence from both animal and human clinical studies showing that the SNARE complex has a key role to play in the aetiology and pathogenesis of schizophrenia is discussed.
Published
2008-11-04
Section
Articles