High light induced accumulation of two isoforms of the CF1 alpha-subunit in mesophyll and bundle sheath chloroplasts of C4 plants.

  • Elzbieta Romanowska Department of Plant Physiology, Warsaw University, Warszawa, Poland. romanela@biol.uw.edu.pl;
  • Marta Powikrowska
  • Maksymilian Zienkiewicz
  • Anna Drozak
  • Berenika Pokorska

Abstract

The effect of light irradiance on the amount of ATP synthase alpha-subunit in mesophyll (M) and bundle sheath (BS) chloroplasts of C(4) species such as maize (Zea mays L., type NADP-ME), millet (Panicum miliaceum, type NAD-ME) and guinea grass (Panicum maximum, type PEP-CK) was investigated in plants grown under high, moderate and low light intensities equal to 800, 350 and 50 micromol photons m(-2) s(-1), respectively. The results demonstrate that alpha-subunit of ATP synthase in both M and BS chloroplasts is altered by light intensity, but differently in the investigated species. Moreover, we identified two isoforms of the CF(1) alpha-subunit, called alpha and alpha. The CF(1) alpha-subunit was the major isoform and was present in all light conditions, whereas alpha was the minor isoform in low light. A strong increase in the level of the alpha-subunit in maize mesophyll and bundle sheath thylakoids was observed after 50 h of high light treatment. The alpha and alpha-subunits from investigated C(4) species displayed apparent molecular masses of 64 and 67 kDa, respectively, on SDS/PAGE. The presence of the alpha-subunit of ATPase was confirmed in isolated CF(1) complex, where it was recognized by antisera to the alpha-subunit. The N-terminal sequence of alpha-subunit is nearly identical to that of alpha. Our results indicate that both isoforms coexist in M and BS chloroplasts during plant growth at all irradiances. We suggest the existence in M and BS chloroplasts of C(4) plants of a mechanism(s) regulating the ATPase composition in response to light irradiance. Accumulation of the alpha isoform may have a protective role under high light stress against over protonation of the thylakoid lumen and photooxidative damage of PSII.
Published
2008-03-07
Section
Articles