15N magnetic relaxation study of backbone dynamics of the ribosome-associated cold shock response protein Yfia of Escherichia coli.
Abstract
In the solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli in the free state two structural segments can be distinguished: a well structured, rigid N-terminal part displaying a betaalphabetabetabetaalpha topology and a flexible C-terminal tail comprising last 20 amino-acid residues. The backbone dynamics of Yfia protein was studied by (15)N nuclear magnetic relaxation at three magnetic fields and analyzed using model-free approach. The overall diffusional tumbling of the N-terminal part is strongly anisotropic with a number of short stretches showing increased mobility either on a subnanosecond time scale, or a micro- to millisecond time scale, or both. In contrast, the unstructured polypeptide chain of the C-terminal part, which cannot be regarded as a rigid structure, shows the predominance of fast local motions over slower ones, both becoming faster closer to the C-terminus.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.