Oxytocin analogues with amide groups substituted by tetrazole groups in position 4, 5 or 9.
Abstract
Eleven oxytocin analogues substituted in position 4, 5 or 9 by tetrazole analogues of amino acids were prepared using solid-phase peptide synthesis method and tested for rat uterotonic in vitro and pressor activities, as well as for their affinity to human oxytocin receptor. The tetrazolic group has been used as a bioisosteric substitution of carboxylic, ester or amide groups in structure-activity relationship studies of biologically active compounds. Replacement of the amide groups of Gln(4) and Asn(5) in oxytocin by tetrazole analogues of aspartic, glutamic and alpha-aminoadipic acids containing the tetrazole moiety in the side chains leads to analogues with decreased biological activities. Oxytocin analogues in which the glycine amide residue in position 9 was substituted by tetrazole analogues of glycine had diminished activities as well. The analysis of differences in rat uterotonic activity and in the affinity to human oxytocin receptors of analogues containing either an acidic 5-substituted tetrazolic group or a neutral 1,5- or 2,5-tetrazole nucleus makes it possible to draw some new conclusions concerning the role of the amide group of amino acids in positions 4, 5 and 9 of oxytocin for its activity. The data suggest that the interaction of the side chain of Gln(4) with the oxytocin receptor is influenced mainly by electronic effects and the hydrogen bonding capacity of the amide group. Steric effects of the side chain are minor. Substitution of Asn(5) by its tetrazole derivative gave an analogue of very low activity. The result suggests that in the interaction between the amide group of Asn(5) and the binding sites of oxytocic receptor hydrogen bonds are of less importance than the spatial requirements for this group.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.