Alteration of O-specific polysaccharide structure of symbiotically defective Mesorhizobium loti mutant 2213.1 derived from strain NZP2213.

  • Anna Turska-Szewczuk Department of General Microbiology, Maria Curie-Sklodowska University, Lublin, Poland.;
  • Hubert Pietras
  • Wojciech Borucki
  • Ryszard Russa

Abstract

Mesorhizobium loti mutant 2213.1 derived from the wild-type strain NZP2213 by Tn5 mutagenesis showed impaired effectiveness of symbiosis with the host plant Lotus corniculatus (Turska-Szewczuk et al., 2007 Microbiol Res, in press). The inability of lipopolysaccharide (LPS) isolated from the mutant 2213.1 strain or de-O-acetylated LPS of the parental cells to inactivate phage A1 particles implicated alterations in the LPS structure. The O-specific polysaccharide of the mutant was studied by chemical analyses along with (1)H and (13)C NMR spectroscopy, which clearly confirmed alterations in the O-chain structure. 2D NMR data showed that the mutant O-polysaccharide consists of a tetrasaccharide repeating unit containing non-substituted as well as O-acetylated or O-methylated 6-deoxytalopyranose residues. Additionally, an immunogold assay revealed a reduced number of gold particles on the mutant bacteroid cell surface, which could result from both a diminished amount of an O-antigenic determinant in mutant LPS and modifications of structural epitopes caused by alterations in O-acetylation or O-methylation of sugar residues. Western immunoblot assay of alkaline de-O-acetylated lipophilic M. loti NZP2213 LPS showed no reactivity with homologous serum indicating a role of O-acetyl groups in its O-specificity.
Published
2008-01-24
Section
Articles