Engineered resistance against proteinases.
Abstract
Exogenous proteinase inhibitors are valuable and economically interesting protective biotechnological tools. We examined whether small proteinase inhibitors when fused to a selected target protein can protect the target from proteolytic degradation without simultaneously affecting the function and activity of the target domain. Two proteinase inhibitors were studied: a Kazal-type silk proteinase inhibitor (SPI2) from Galleria mellonella, and the Cucurbita maxima trypsin inhibitor I (CMTI I). Both inhibitors target serine proteinases, are small proteins with a compact structure stabilized by a network of disulfide bridges, and are expressed as free polypeptides in their natural surroundings. Four constructs were prepared: the gene for either of the inhibitors was ligated to the 5' end of the DNA encoding one or the other of two selected target proteins, the coat protein (CP) of Potato potyvirus Y or the Escherichia coli beta-glucuronidase (GUS). CMTI I fused to the target proteins strongly hampered their functions. Moreover, the inhibitory activity of CMTI I was retained only when it was fused to the CP. In contrast, when fused to SPI2, specific features and functions of both target proteins were retained and the inhibitory activity of SPI2 was fully preserved. Measuring proteolysis in the presence or absence of either inhibitor, we demonstrated that proteinase inhibitors can protect target proteins used either free or as a fusion domain. Interestingly, their inhibitory efficiency was superior to that of a commercial inhibitor of serine proteinases, AEBSF.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.