Analysis of individual azurocidin N-glycosylation sites in regard to its secretion by insect cells, susceptibility to proteolysis and antibacterial activity.
Abstract
Azurocidin is an inactive serine protease homolog with primary sequence similarity to neutrophil elastase, cathepsin G, and proteinase 3. The aim of this study was to investigate possible consequences of differential glycosylation of azurocidin in regard to its secretion, protein stability as measured by susceptibility to proteolysis, and antibacterial activity. Site-directed mutagenesis was employed to generate mutant azurocidin variants lacking individual N-glycosylation sites. Our results show that N-linked glycans may play a role in proper azurocidin folding and subsequent secretion by insect cells. We also demonstrate that N-linked glycosylation contributes to azurocidin stability by protecting it from proteolysis. The lack of N-glycosylation at individual sites does not significantly influence the azurocidin antibacterial activity.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.