Plasma membrane homing of tissue nonspecific alkaline phosphatase under the influence of 3-hydrogenkwadaphnin, an antiproliferative agent from Dendrostellera lessertii.

  • Akram Sadeghirizi Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.;
  • Razieh Yazdanparast

Abstract

Several mammalian enzymes are anchored to the outer surface of the plasma membrane by a covalently attached glycosylphosphatidylinositol (GPI) structure. These include acetylcholinesterase, alkaline phosphatase (AP) and 5'-nucleotidase among other enzymes. Recently, it has been reported that these membrane enzymes can be released into the serum by the GPI-dependent phospholipase D under various medical disturbances such as cancer and/or by chemical and physical manipulation of the biological systems. Treatment of MCF-7 cells with two consecutive effective concentrations of 3-hydrogenkwadaphnin (3-HK, 3 nM) for 48 h enhanced membrane AP activity by almost 330% along with a 40% reduction in the AP activity of the cell culture medium. In addition, our data indicate that 3-HK is capable of inducing mainly the tissue-nonspecific alkaline phosphatase (TNAP) isoenzyme, along with enhancing its thermostability. These findings, besides establishing a correlation between the antiproliferative activity of 3-HK and the extent of plasma membrane AP activity, might assist in the development of new diagnostic tools for following cancer medical treatments.
Published
2007-05-23
Section
Articles