Virus-like particles of potato leafroll virus as potential carrier system for nucleic acids.

  • Elzbieta Sułuja Institute of Biochemistry and Biophysics PAS, Warszawa, Poland.;
  • Ludmiła Strokowskaja
  • Włodzimierz Zagórski-Ostoja
  • Andrzej Pałucha

Abstract

Potato leafroll virus is a member of the polerovirus genus. The isometric virion is formed by a coat protein encapsidating single-stranded, positive-sense, mono-partite genomic RNA with covalently attached viral protein at the 5' end. The coat protein of the virus exists in two forms: i) a 23 kDa protein, the product of the coat protein gene, and ii) a 78 kDa protein, the product of the coat protein gene and an additional open reading frame expressed by read-through of the coat protein gene stop codon. The aim of this work was the expression of potato leafroll virus coat protein-based proteins that would be able to assemble into virus-like particles in insect cells. These modified particles were tested for their ability to encapsidate nucleic acids. Two types of N-terminally His-tagged coat protein constructs were used for the expression in insect cells: one, encoding a 23 kDa protein with the C-terminal amino-acid sequence corresponding to the wild type coat protein and the second with additional clathrin binding domain at the C-terminus. The expression of these two proteins by a recombinant baculovirus was characterized by Western immunoblotting with antibodies directed against potato leafroll virus. The protection or putative encapsidation of nucleic acids by these two coat protein derivatives was shown by DNase I and RNase A protection assays.
Published
2005-09-30
Section
Articles