Splenic eumelanin differs from hair eumelanin in C57BL/6 mice.
Abstract
The presence of melanin in spleens of black C57BL/6 mice has been known for long. Although its origin and biological functions are still obscure, the relation of splenic melanin to the hair follicle and skin pigmentation was suggested. Here, we demonstrated using for the first time electron paramagnetic resonance spectroscopy that black-spotted C57BL/6 spleens contain eumelanin. Its presence here is a "yes or no" phenomenon, as even in the groups which revealed the highest percentage of spots single organs completely devoid of the pigment were found. Percentage of the spotted spleens decreased, however, with the progress of telogen after spontaneously-induced hair growth. The paramagnetic properties of the spleen eumelanin differed from the hair shaft or anagen VI skin melanin. The splenic melanin revealed narrower signal, and its microwave power saturability betrayed more heterogenous population of paramagnetic centres than in the skin or hair shaft pigment. Interestingly, the pigment of dry hair shafts and of the wet tissue of depilated anagen VI skin revealed almost identical properties. The properties of splenic melanin better resembled the synthetic dopa melanin (water suspension, and to a lesser degree -- powder sample) than the skin/hair melanin. All these findings may indicate a limited degradation of splenic melanin as compared to the skin/hair pigment. The splenic eumelanin may at least in part originate from the skin melanin phagocyted in catagen by the Langerhans cells or macrophages and transported to the organ.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.