The contribution of uncoupling protein and ATP synthase to state 3 respiration in Acanthamoeba castellanii mitochondria.
Abstract
Mitochondria of the amoeba Acanthamoeba castellanii possess a free fatty acid-activated uncoupling protein (AcUCP) that mediates proton re-uptake driven by the mitochondrial proton electrochemical gradient. We show that AcUCP activity diverts energy from ATP synthesis during state 3 mitochondrial respiration in a fatty acid-dependent way. The efficiency of AcUCP in mitochondrial uncoupling increases when the state 3 respiratory rate decreases as the AcUCP contribution is constant at a given linoleic acid concentration while the ATP synthase contribution decreases with respiratory rate. Respiration sustained by this energy-dissipating process remains constant at a given linoleic acid concentration until more than 60% inhibition of state 3 respiration by n-butyl malonate is achieved. The present study supports the validity of the ADP/O method to determine the actual contributions of AcUCP (activated with various linoleic acid concentrations) and ATP synthase in state 3 respiration of A.castellanii mitochondria fully depleted of free fatty acid-activated and describes how the two contributions vary when the rate of succinate dehydrogenase is decreased by succinate uptake limitation.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.