Mechanism of peroxynitrite interaction with cytochrome c.

  • Lidia Gebicka Institute of Applied Radiation Chemistry, Technical University of Łódź, Wróblewskiego 15, 93-590 Łódź, Poland.;
  • Joanna Didik

Abstract

Kinetics of the reaction of peroxynitrite with ferric cytochrome c in the absence and presence of bicarbonate was studied. It was found that the heme iron in ferric cytochrome c does not react directly with peroxynitrite. The rates of the absorbance changes in the Soret region of cytochrome c spectrum caused by peroxynitrite or peroxynitrite/bicarbonate were the same as the rate of spontaneous isomerization of peroxynitrite or as the rate of the reaction of peroxynitrite with bicarbonate, respectively. This means that intermediate products of peroxynitrite decomposition, (.)OH/(.)NO(2) or, in the presence of bicarbonate, CO(3)(-)(.)/(.)NO(2), are the species responsible for the absorbance changes in the Soret band of cytochrome c. Modifications of the heme center of cytochrome c by radiolytically produced radicals, (.)OH, (.)NO(2) or CO(3)(-)(.), were also studied. The absorbance changes in the Soret band caused by radiolytically produced (.)OH or CO(3)(-)(.) were much more significant that those observed after peroxynitrite treatment, compared under similar concentrations of radicals. (.)NO(2) produced radiolytically did not interact with the heme center of cytochrome c. Cytochrome c exhibited an increased peroxidase-like activity after reaction with peroxynitrite as well as with radiolytically produced (.)OH, (.)NO(2) or CO(3)(-)(.) radicals. This means that modification of protein structure: oxidation of amino acids and/or tyrosine nitration, facilitates reaction of H(2)O(2) with the heme iron of cytochrome c, followed by reaction with the second substrate.
Published
2003-09-30
Section
Articles