The effect of vanadate on Pichia pastoris growth, protein kinase A activity and ribosomal protein phosphorylation.

  • Magdalena Frajnt Department of Molecular Biology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.;
  • Małgorzata Cytryńska
  • Teresa Jakubowicz

Abstract

It was found that wild type yeast Pichia pastoris can tolerate vanadate concentration as high as 25 mM in the growth medium. Moreover, four vanadate-resistant P. pastoris strains designated JC100/1, JC100/3, JC100/9 and JC100/15 exhibiting tolerance up to 150 mM vanadate were selected. Growth of P. pastoris was correlated with vanadate to vanadyl reduction and its accumulation in the growth medium. In two selected strains, JC100/9 and JC100/15, protein kinase A activity was much higher in comparison to the wild type strain even without vanadate addition to the growth medium. Moreover, in the presence of vanadate, protein kinase A activity was significantly increased in the wild type and the vanadate-resistant JC100/1 and JC100/3 strains. It was also found that phosphorylation of a 40 kDa protein associated with ribosomes occured in all vanadate-resistant strains from the logarithmic, while in the wild type strain from the stationary growth phase. From the presented results it can be concluded that a protein kinase A signalling pathway(s) might be involved in the mechanism of P. pastoris vanadate resistance. The results also indicate a possible role of the 40 kDa protein in protection of P. pastoris against vanadate toxicity.
Published
2002-12-31
Section
Articles