5'-Esters of 2'-deoxyadenosine and 2-chloro-2'-deoxyadenosine with cell differentiation-provoking agents.
Abstract
Phenylacetic and retinoic acids are carboxyacidic cell differentiating agents displaying anticancer activities. We report on a new class of compounds including the 5'-esters of 2'-deoxyadenosine (dA) or 2-chloro-2'-deoxyadenosine (cladribine, 2CdA) and the aforementioned acids. The rationale behind the synthesis of these esters was that if they are hydrolyzed inside the lymphoid cells, either dA will be removed from the intracellular environment by deamination, or 2CdA will be phosphorylated and accumulated. In either case targetted delivery of the differentiating agent to the lymphoid cells may be envisaged. The said compounds were synthesized by the Mitsunobu procedure employing triphenylphosphine and azadicarboxylic acid esters, and their stability was tested against various esterases. Esters of dA and 2CdA with phenylacetic acids were found to be resistant to enzymatic hydrolysis, whereas those with retinoic acids were efficiently hydrolyzed by commercially available hepatic esterase as well as by esterases present in the blood plasma and in diluted human lymphocyte lysate. Susceptibility to enzymatic hydrolysis was found to be a prerequisite of cytotoxic and/or differentiating activity of these esters in leukemic cell lines.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.