GTP-binding properties of the membrane-bound form of porcine liver annexin VI.
Abstract
Annexin VI (AnxVI) of molecular mass 68-70 kDa belongs to a multigenic family of ubiquitous Ca2+- and phospholipid-binding proteins. In this report, we describe the GTP-binding properties of porcine liver AnxVI, determined with a fluorescent GTP analogue, 2'-(or 3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP). The optimal binding of TNP-GTP to AnxVI was observed in the presence of Ca2+ and asolectin liposomes, as evidenced by a 5.5-fold increase of TNP-GTP fluorescence and a concomitant blue shift (by 17 nm) of its maximal emission wavelength. Titration of AnxVI with TNP-GTP resulted in the determination of the dissociation constant (Kd) and binding stoichiometry that amounted to 1.3 microM and 1:1 TNP-GTP/AnxVI, mole/mole, respectively. In addition, the intrinsic fluorescence of the membrane-bound form of AnxVI was quenched by TNP-GTP and this was accompanied by fluorescence resonance energy transfer (FRET) from AnxVI Trp residues to TNP-GTP. This indicates that the GTP-binding site within the AnxVI molecule is probably located in the vicinity of a Trp-containing domain of the protein. By controlled proteolysis of human recombinant AnxVI, followed by purification of the proteolytic fragments by affinity chromatography on GTP-agarose, we isolated a 35 kDa fragment corresponding to the N-terminal half of AnxVI containing Trp192. On the basis of these results, we suggest that AnxVI is a GTP-binding protein and the binding of the nucleotide may have a regulatory impact on the interaction of annexin with membranes, e.g. formation of ion channels by the protein.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.