The role of cholesterol and sphigomyelin in tyrosine phosphorylation of proteins and capping of Fcgamma receptor II.
Abstract
Cross-linking of cell surface receptors by multivalent ligands, e.g. by antibodies, evokes their clustering -- patching. Subsequently, these clusters can be translocated by the acto-myosin machinery toward one pole of the cell and assembly cap. Patching of FcgammaRII in U937 cells correlates with tyrosine phosphorylation of several proteins while cap assembly correlates with their dephosphorylation. To study the mechanism of activation of tyrosine kinases during FcgammaRII activation we disturbed the organization of the putative plasma membrane microdomains by depletion of membrane cholesterol and sphingomyelin. Cholesterol was removed with the use of beta-cyclodextrin while sphingomyelin was decomposed by exogenous sphingomyelinase. Cyclodextrin at 5-10 mM removed about 70% of cholesterol from the cells and abolished the assembly of FcgammaRII caps thereby arresting the receptors at the patching stage. Similarly, 70 mU/ml sphingomyelinase inhibited cap formation by 60%. Cholesterol and sphingomyelin depletion also suppressed the tyrosine phosphorylation of proteins which accompanied cross-linking of FcgammaRII. The observations indicate that cholesterol and sphingomyelin can control the interactions of tyrosine kinases with clustered FcgammaRII.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.