Nucleosomes and regulation of gene expression. Structure of the HIV-1 5'LTR.
Abstract
Packaging of DNA into chromatin adds complexity to the problem of regulation of gene expression. Nucleosomes affect the accessibility of transcription factors to occupy their binding sites in chromatin of eukaryotic cells. The disruption of nucleosome structure within the enhancer/promoter region of the integrated HIV-1 proviral genome is an instructive example of a chromatin remodeling process during transcriptional activation. To investigate the mechanism responsible for generating nuclease hypersensitive sites that exist in vivo in the promoter/enhancer region of the 5'LTR (long terminal repeat) of integrated HIV-1 we have utilized an in vitro chromatin assembly system with Xenopus oocyte extracts. Chromatin assembly in the presence of Sp1 and NFkappaB transcription factors induces DNase I hypersensitive sites on either side of their binding sites and positions the adjacent nucleosomes. This structure can also be formed in a factor-induced, ATP-dependent chromatin remodeling process and closely resembles the in vivo chromatin structure. The DNase I hypersensitive sites that form within the HIV LTR are probably histone-free and remain after removal of transcription factors.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.