Cyclases of the 3'-terminal phosphate in RNA: a new family of RNA processing enzymes conserved in eucarya, bacteria and archaea.

  • W Filipowicz Friedrich Miescher-Institut, Basel, Switzerland. Filipowi@fmi.ch;
  • E Billy
  • K Drabikowski
  • P Genschik

Abstract

The 2',3'-cyclic phosphate termini are produced, as either intermediates or final products, during RNA cleavage by many different endoribonucleases. Likewise, ribozymes such as hammerheads, hairpins, or the hepatitis delta ribozyme, generate 2',3'-cyclic phosphate ends. Discovery of the RNA 3'-terminal phosphate cyclase has indicated that cyclic phosphate termini in RNA can also be produced by an entirely different mechanism. The RNA 3'-phosphate cyclase converts the 3'-terminal phosphate in RNA into the 2',3'-cyclic phosphodiester in the ATP-dependent reaction which involves formation of the covalent cyclase-AMP and the RNA-N3' pp5' A intermediates. The findings that several eukaryotic and prokaryotic RNA ligases require the 2',3'-cyclic phosphate for the ligation of RNA molecules raised a possibility that the RNA 3'-phosphate cyclase may have an anabolic function in RNA metabolism by generating terminal cyclic groups required for ligation. Recent cloning of a cDNA encoding the human cyclase indicated that genes encoding cyclase-like proteins are conserved among Eucarya, Bacteria, and Archaea. The protein encoded by the Escherichia coli gene was overexpressed and shown to have the RNA 3'-phosphate cyclase activity. This article reviews properties of the human and bacterial cyclases, their mechanism of action and substrate specificity. Possible biological functions of the enzymes are also discussed.
Published
1998-12-31
Section
Articles