Intramolecular electron transfer between tryptophan radical and tyrosine in oligoproline-bridged model peptides and hen egg-white lysozyme.
Abstract
Long range electron transfer (LRET) across protein matrix underlies all one-electron cellular redox reactions. Elucidation of molecular electron transfer pathways and parametrization of their relative efficiency is one of the most challenging problems in the studies on LRET in proteins. In this paper results of pulse radiolysis investigations on kinetics of LRET accompanying intramolecular radical transformation Trp. --> TyrO. in model peptides built of tryptophan and tyrosine bridged by an oligoproline fragment are reviewed, along with an interpretation of the observed distance dependence of the rate of LRET in terms of conformational properties of the peptides, and partitioning of LRET between electron transfer pathways through space and through peptide backbone. This review on model peptide systems is supplemented with recapitulation of similar studies on the same intramolecular transformation in hen egg-white lysozyme, which allowed to identify Trp./Tyr redox pairs and associated electron transfer pathways involved in LRET in this protein.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.