Functional aspects of the nuclear matrix.
Abstract
A model is proposed of the way in which the unwinding of the chromosomal DNA loops is controlled during DNA replication. It is based on the observation of a permanent binding of replication origins to the nuclear matrix and of a transient attachment of replicating DNA regions to sites in the immediate neighbourhood. DNA unwinding is controlled while the replicating loops are reeled through the replication binding sites. Also a mechanism is proposed to explain how the once-per-cycle replication of individual replicons can be controlled. DNA synthesis is initiated at single-stranded loops exposed by tandemly repeated DNA sequences at the replication origins. The single-stranded loops turn into fully double-stranded DNA during replication, becoming inaccessible for a second initiation during the same cell cycle. The configuration competent for initiation is restored by specific protein-DNA rearrangements coupled to mitotic condensation of the matrix into chromosomal scaffolds and its reversal.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.