Characterization of the mitochondrial DNA polymerase from Saccharomyces cerevisiae.
Abstract
The mitochondrial DNA (mtDNA) polymerase was isolated from a protease-deficient yeast strain (PY2), and purified about 3000 fold by a column chromatography on phosphocellulose, heparin-agarose, and single-stranded DNA cellulose. The purified polymerase was characterized with respect to optimal nucleotide concentrations, template-primer specificity and sensitivity to some inhibitors. These results were compared with the nuclear DNA polymerase I activity. Both polymerases showed similar requirement of deoxynucleotide concentrations (Km < 1 microM), and highest activity with poly(dA-dT) template. However, the mtDNA polymerase was more sensitive to ddTTP, EtBr and Mn2+ inhibition in comparison to the nuclear DNA polymerase I. The mtDNA polymerase did not need ATP as an energy source for in vitro DNA synthesis. This mtDNA polymerase preparation also showed 3'-->5' exonuclease activity.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.