Inhibition of GPR4 attenuates SH-SY5Y cell injury in cerebral ischemia/reperfusion via anti-apoptotic pathways
Abstract
Cerebral ischemia/reperfusion injury (CIRI) can lead to increased vascular endothelial permeability and blood-brain barrier damage in patients with stroke. G protein-coupled receptor 4 (GPR4) is a functional pH sensor that plays a key role in renal ischemia-reperfusion-induced apoptosis. However, whether GPR4 has a role in cerebral ischemia remains to be further studied. Our study found that after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment, the levels of GPR4 and CHOP in SH-SY5Y cells were significantly increased, which was accompanied by a decrease in cell viability, and an increase in LDH release and apoptosis. After knockdown of GPR4 using shRNA, CHOP levels in SH-SY5Y cells were also decreased, which unexpectedly increased cell activity and decreased LDH release and apoptosis rate. Interestingly, CHOP overexpression reversed the effect of GPR4 knockdown, suggesting that OGD/R-induced CIRI may involve endoplasmic reticulum stress-related apoptosis. In conclusion, our study provided a basis for further research on the mechanism of CIRI.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.