The combination therapy of targeting both paclitaxel and Dendrophthoe pentandra leaves extract nanoparticles for improvement breast cancer treatment efficacy by reducing TUBB3 and MAP4 expressions
Abstract
The aim of this study is to investigate the combination treatments of paclitaxel and chitosan-Dendrophthoe pentandra leaves extract nanoparticles (NPDP) on MCF-7 breast cancer cells. Chitosan-NPDP nanoparticles were characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and assessed by using immunofluorescence microscopy. MCF-7 cells are cultured and divided into six groups: group 1 was a negative control (without paclitaxel or NPDP); group 2 was treated with paclitaxel alone; groups 3-5 were treated with NPDP (2, 4, and 8 mg/mL, respectively) and group 6 was treated only by 8 mg/mL of chitosan-NPDP nanoparticles. The proliferation and cell cycle were analyzed by flow cytometry and the expression of TUBB3 and MAP4 were assessed by immunofluorescence microscopy. The combinations of paclitaxel-NPDP significantly inhibit proliferation of cells (P<0.001) and it is able to induce G2/M cell cycle arrest (P<0.001). The combination of paclitaxel-NPDP significantly decreases the expressions of TUBB3 (P<0.001) and MAP4 (P<0.001) in MCF-7 cells. These results indicate that the combination of NPDP nanoparticles could reduce the expressions of TUBB3 and MAP4. This research may provide possible sources of new therapy for NPDP.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.