miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/ TXNIP/NLRP3 pathway
Abstract
Objective: Cerebral ischemia/reperfusion (I/R) injury is stimulated by blood restoration after ischemic stroke. Inflammatory response and inflammasome activation exerted vital functions in the development of cerebral I/R injury. miR-155-5p regulates inflammatory response in some diseases, while its role in inflammatory response and inflammasome activation of cerebral I/R injury development is unclear. Hence, the research focuses on investigating if miR-155-5p attenuate cerebral I/R injury via regulating inflammatory response and inflammasome activation and exploring the potential mechanism. Methods: The oxygen-glucose deprivation/reoxygenation (OGD/R) model and the middle cerebral artery occlusion (MCAO) model were constructed. Cell viability and cytotoxicity were reflected by CCK-8 assay and LDH activity. The inflammatory cytokines secretion was determined using ELISA assay. Brain tissue infarction was evaluated using TTC staining. Results: miR-155-5p, Thioredoxin Interacting Protein (TXNIP) and NLR Family Pyrin Domain Containing 3 (NLRP3) were highly expressed in OGD/R model and MCAO rats. Knockdown of miR-155-5p alleviated cell injury, cell inflammation, and cell pyroptosis stimulated by OGD/R. Besides, miR-155-5p regulated TXNIP/NLRP3 pathway through modulating Dual-Specificity Phosphatase 14 (DUSP14) expression. Furthermore, knockdown of miR-155-5p improved brain tissue infarction and inhibited inflammation response and cell pyroptosis of MCAO rats. Conclusion: Knockdown of miR-155-5p attenuated I/R inflammation and cell pyroptosis of cerebral via modulating DUSP14/TXNIP/NLRP3 pathway. These findings may provide a promising strategy to attenuate cerebral I/R injury.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.