Chrysophanol ameliorates oxidative stress and pyroptosis in mice with diabetic nephropathy through the Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 signaling pathway
Abstract
Diabetic nephropathy (DN), a microvascular complication of diabetes, increases the risk of all-cause diabetes and cardiovascular mortalities. Moreover, oxidative stress and pyroptosis play important roles in the pathogenesis of DN. Rhubarb is widely used in traditional medicine, and chrysophanol (Chr), a free anthraquinone compound abundant in rhubarb, exhibits potent antioxidant properties and ameliorates renal fibrosis. Therefore, this study aimed to investigate the effects of Chr on renal injury, oxidative stress, and pyroptosis in mice with DN. A DN model was established by feeding the mice a high-sugar and fat diet and injecting them with 50 mg/kg streptozotocin as a positive control. The DN mice had significantly impaired renal function, thickened glomerular thylakoids and basement membranes, increased fibrous tissue, and inflammatory cell infiltration. Superoxide dismutase (SOD) levels were reduced, malondialdehyde (MDA) levels were increased, interleukin (IL)-1β and IL-18 increased, and cleaved caspase-1, caspase-1, and gasdermin D (GSDMD) involved in the process of pyroptosis were upregulated in DN. Kelch-like ECH-associated protein 1 (Keap1) expression was upregulated, and nuclear factor erythroid 2-related factor 2 (Nrf2) expression was downregulated. Compared to those in the DN group, the Chr-treated mice with DN had improved renal dysfunction, weakened glomerular thylakoid and basement membrane thickening, and reduced fibrous tissue proliferation and inflammatory cell infiltration. Additionally, Chr increased SOD levels, decreased MDA, IL-1β, and IL-18, down-regulated caspase-1, cleaved caspase-1, GSDMD, and Keap1 expression, and upregulated Nrf2 expression, which reversed the DN. Therefore, Chr reduced oxidative stress and pyroptosis in DNmice by activating the Keap1/Nrf2 pathway.
Copyright (c) 2023 Xinzhu Yuan, Wenwu Tang, Changwei Lin, Hongni He, Lingqin Li
This work is licensed under a Creative Commons Attribution 4.0 International License.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.