Age-dependent systemic DNA damage in early Type 2 Diabetes mellitus
Abstract
Oxidative stress, capable of eliciting damage to various biomolecules including DNA, is a recognized component of diabetes mellitus and its complications. Metabolic syndrome (MetS) is associated with the development of type 2 diabetes mellitus (T2DM), as well as other unfavorable outcomes. The aim of this study was to elucidate the role of oxidative stress in the development of T2DM, by investigating association of oxidative DNA damage with metabolic parameters in subjects with MetS and early T2DM.
Selected anthropometric and biochemical parameters of MetS, inflammation and oxidative DNA damage: body mass index (BMI), fatty liver index (FLI), waist circumference (WC), total cholesterol, HDL and LDL-cholesterol, GGT, uric acid, total leukocyte/neutrophil count, and urinary 8-oxo-deoxyguanosine (u-8-oxodG) were assessed in male subjects with MetS and both younger (≤55 years) and older (>55 years) subjects with T2DM of short duration without complications.
BMI, FLI, WC, total and LDL-cholesterol and uric acid were higher, while the u-8-oxodG was lower in MetS group, when compared to older T2DM subjects. None of these parameters were different neither between MetS and younger T2DM, nor between two sub-groups of subjects with T2DM. Values of CRP, HDL-cholesterol, triglycerides, GGT, leukocytes and neutrophils were not different between all examined groups of subjects.
Age-dependent increase in u-8-oxodG suggests that aging process, rather than metabolic disturbances or diabetes per se plays a pivotal role in development of oxidative DNA-damage in T2DM. Oxidative DNA damage cannot serve as an universal early marker of T2DM.
References
Roberts CK, Sindhu KK (2009) Oxidative stress and metabolic syndrome. Life Sci 84: 705–712. http://www.ncbi.nlm.nih.gov/pubmed/19281826
Rochette L, Zeller M, Cottin Y, Vergely C (2014) Diabetes, oxidative stress and therapeutic strategies. Bioch Biophys Acta 1840: 2709–2729. http://www.ncbi.nlm.nih.gov/pubmed/24905298
Valko M, Leibfritz D, Moncol J, Cronin TDM, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44–84. http://www.ncbi.nlm.nih.gov/pubmed/16978905
Halliwell B, Gutteridge JMC (2015) Reactive species can be poisonous. In Free Radical Biology and Medicine. 5th ed. Halliwell B, Gutteridge JMC eds, pp 463–510. Oxford University Press.
Erol A (2010) Systemic DNA damage response and metabolic syndrome as a premalignant state. Curr Mol Med 10: 321-334. http://www.ingentaconnect.com/contentone/ben/cmm/2010/00000010/00000003/art00011?crawler=true
Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461: 1071–1078. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906700/
Poulsen HE, Nadal LL, Broedbaek K, Nielsen PE, Weimann A (2014) Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim Biophys Acta 1840: 801–808. http://www.ncbi.nlm.nih.gov/pubmed/23791936
Loft S, Danielsen P, Løhr M, Jantzen K, Hemmingsen JG, Roursgaard M, Karotki DG, Møller P (2012) Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA. Arch Bioc-hem Biophys 518: 142-150. http://www.ncbi.nlm.nih.gov/pubmed/22239988
Demirbag R, Yilmaz R, Gur M, Celik H, Guzel S, Selek S Kocyigit A (2006) DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements Int J Clin Pract 60: 1187-1193. http://www.ncbi.nlm.nih.gov/pubmed/16981963
Song F, Jia W, Yao Y (2007) Oxidative stress, antioxidant status and DNA damage in patients with im-paired glucose regulation and newly diagnosed Type 2 diabetes Clin Sci (Lond) 112: 599-606. http://www.ncbi.nlm.nih.gov/pubmed/17209802
Milić M, Kišan M, Rogulj D, Radman M, Lovrenčić MV, Konjevoda P, Domijan AM (2013) Level of primary DNA damage in the early stage of metabolic syndrome. Mutat Res Genet Toxicol Environ Mu-tagen 758: 1-5. http://www.ncbi.nlm.nih.gov/pubmed/24076402
Broedbaek K, Weimann A, Stovgaard ES, Poulsen HE (2011) Urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic Biol Med 51: 1473–1479.
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285: 2486-2497. http://jama.jamanetwork.com/article.aspx?articleid=193847
Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C et (2006) The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 6: 33. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636651/
Evans MD, Singh R, Mistry V, Sandhu K, Farmer PB, Cooke MS (2008) Analysis of urinary 8-oxo-7,8-dihydro-purine-2'-deoxyribonucleosides by LC-MS/MS and improved ELISA. Free Radic Res 42: 831-840. http://www.ncbi.nlm.nih.gov/pubmed/18985483
Soares JP, Cortinhas A, Bento T, Leitão JC, Collins AR, Gaivão I, Mota MP (2014) Aging and DNA damage in humans: a meta‐analysis study. Aging (Albany NY) 6: 432-439.
Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, Kasznicki J, Zurawska M, Drzewoski J (2004) DNA damage and repair in type 2 diabetes mellitus. Mutat Res; 554: 297-304.
Bukhari SA, Naqvi SA, Nagra SA, Anjum F, Javed S, Farooq M (2015) Assessing of oxidative stress rela-ted parameters. Pak J Pharm Sci 28: 483-491.
Løhr M, Jensen A, Eriksen L, Grønbæk M, Loft S, Møller P (2015). Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells. Oncotarget 6: 2641-2653.
International Diabetes Federation (2015). IDF Diabetes Atlas. 7 ed. International Diabetes federation. http://www.diabetesatlas.org.
Feig D, Duk-Hee K, Johnson RH (2008) Uric Acid and Cardiovascular Risk. N Engl J Med 359: 1811-1821. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684330/
Takahashi S, Yamamoto T, Tsutsumi Z, Moriwaki Y, Yamakita J, Higashino K (1997) Close correlation between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism 46: 1162-1165. http://www.ncbi.nlm.nih.gov/pubmed/9322800
Hayden MR, Tyagi SC (2004) Uric acid: A new look at an old risk marker for cardiovascular disease me-tabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab (Lond) 1: 10. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC529248/
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin sig-naling by reactive oxygen and nitrogen species. Physiol Rev 89: 27-71. http://www.ncbi.nlm.nih.gov/pubmed/19126754
Vučić Lovrenčić M, Pibernik-Okanović M, Šekerija M, Prašek M, Ajduković D, Kos J, Hermanns N (2015) Improvement in Depressive Symptoms Is Associated with Reduced Oxidative Damage and Inflammatory Response in Type 2 Diabetic Patients with Subsyndromal Depression: The Results of a Randomized Controlled Trial Comparing Psychoeducation, Physical Exercise, and Enhanced Treatment as Usual. J Endocrinol Diabetes 210406. http://www.hindawi.com/journals/ije/2015/210406/
Hanigan MH (2014) Gamma-glutamyl transpeptidase: redox regulation and drug resistance. Adv Cancer Res 122: 103–141. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388159/
Al Aubaidy H, Jelinek HF (2011) Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur J Endocrinol 164: 899-904. http://www.infekt.ch/content/uploads/2013/11/jc_september11_kreiner.pdf
Rytter E, Vessby B, Asgård R, Johansson C, Sjödin A, Abramsson-Zetterberg L, Möller L, Basu S (2009) Glycaemic status in relation to oxidative stress and inflammation in well-controlled type 2 diabetes sub-jects. Br J Nutr 101: 1423-1426. http://www.ncbi.nlm.nih.gov/pubmed/19459227
Dincer Y, Akcay T, Alademir Z, Seyisoglu H, Ertungalp E (2002). Assessment of DNA base oxidation and glutathione level in patients with type 2 diabetes. Mutat Res 505: 75–81. http://www.ncbi.nlm.nih.gov/pubmed/12175907
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.