Ergosterol biosynthesis inhibition: a target for antifungal agents.
Abstract
The isoprenoid sterols play a crucial role in the viability of all fungi; those unable to synthesise ergosterol because of inhibition, growth conditions or mutation must take it up from the environment. A range of compound types have been discovered which interfere with the biosynthetic pathway from acetate to ergosterol and these compounds have antifungal actions. Inhibition of several of the steps has yielded agents which have been used with great success as medical and agrochemical agents. The most important biosynthetic steps that have been exploited are inhibition of squalene epoxidase, (the allylamines and tolnaftate) C14 demethylation (the azoles), delta 7,8 isomerase and delta 14 reductase which are inhibited by the morpholines. Recent research has shown that inhibition of C24 methyltransferase and C4 demethylation also yield antifungal agents. Combination studies demonstrate that synergy between agents of different types can be measured. Fungicidal effects were observed when a combination of two fungistatic agents was used.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.